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Abstract 

With the growing population of amputees, powered prostheses can be a solution to improve the 

quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to 

the lost limb via controllers that emulate the mechanical impedance of the human ankle. Therefore, 

the understanding of human ankle dynamics is of major significance. First, this work reports the 

modulation of the mechanical impedance via two mechanisms: the co-contraction of the calf 

muscles and a change of mean ankle torque and angle. Then, the mechanical impedance of the 

ankle was determined, for the first time, as a multivariable and time-varying system. These findings 

reveal the importance of recognizing the state of the user during the gait when the user interacts 

with the environment. In addition to studying the ankle impedance, a wearable device was designed 

and evaluated to further the studies on robotic perception for ankle-foot prostheses. This device is 

capable of characterizing the ground environment and estimating the gait state using visual-inertial 

sensors. Finally, this study contributes to the field of ankle-foot prostheses by identifying the 

mechanical behavior of the human ankle and developing a platform to test perception algorithms 

for the control of robotic prostheses. 
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1 Introduction 

The incidence of amputations is a growing problem, currently affecting 2 million people in the 

United States, and is projected to affect approximately 3.6 million people in 2050 [1]. This steep 

increase is justified by the aging of the population around the world, and the increasing incidence 

of diabetes, which is the leading cause of amputations. Even more alarming is that this condition 

has a 50% mortality rate in the following 5 years after amputation due to vascular diseases [2]. 

Powered prostheses have the potential to help this community by recovering some of the mobility 

lost because of the amputation. When amputees are better assisted during activities of daily living 

(ADL), they have an opportunity to regain a healthier life. 

Currently, there are many transtibial powered prostheses available commercially [3]–[5]. 

BiOM can decrease the metabolic cost of the gait by applying an ankle torque during toe-off. It 

includes an embedded controller that adapts to the user cadence and ground level [4]. Another 

prosthesis that adapts to the terrain is the Ossur’s Proprio Foot, which can dorsiflex the foot during 

the swing to provide foot clearance [5]. Endolite’s Elan uses hydraulics to adjust ankle resistance 

[3], mimicking the ankle’s behavior. Orson et al. included an active transversal DOF to reduce 

shear stress and rotation of the residual limb in the socket [6] since it was shown to cause abrasion 

and skin problems [7]. However, a major concern for the control of these prostheses is how to 

modulate the compliance of the prosthesis as it interacts mechanically with the ground.  

This compliance can be measured as mechanical impedance. The mechanical impedance 

defines how much reactive torque the ankle generates when an external disturbance changes the 

ankle angle. Some prostheses are capable of modulating the ankle impedance [8]–[15] and 

experimental devices were developed to test the accuracy of this modulation [16], [17]. A good 

approach to control these prostheses would be to modulate the same ankle mechanical impedance 

of the amputee prior to the amputation. Thus, studying the mechanical properties of unpaired 

subjects might provide useful insights into the design of new control strategies for powered 

prostheses. 

 Early developments on ankle impedance estimation go back to the 1980s with Weiss, 

Kearney, and Hunter [18]–[20]. They estimated a 2nd order impedance of the ankle of subjects lying 

in the supine position, and noticed that the ankle position can cause an increase in  stiffness and 
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damping components up to a factor of five and eight, respectively [18]. Furthermore, a related 

finding showed that the ankle impedance was modulated by an increase of the ankle torque. This 

study found increases in the stiffness by about 10 Nm/rad for every Nm torque unit [19]. In other 

words, the ankle impedance in sagittal plane and at a steady-state changed according to the ankle 

position and active torque; both of these being unique to different activities of daily living. 

Recently, it has been reported that the ankle impedance might be more dynamically complex than 

a 2nd order system. Therani suggests that the ankle impedance should be modeled by a 3rd order 

system rather than the 2nd order spring-mass-damper, matching a Hill-type muscle model [21]. 

Studies of  the ankle impedance in the sagittal plane extended to functional activities, such 

as straight walking [22] and turning [23]. The early stance phase was studied by Rouse et al. using 

a vibrating platform, called Perturberator, that applies torque perturbations to the ankle from the 

ground. They found a linearly increasing stiffness from 20% to 70% of the gait cycle, ranging 

between 105-455 Nm/rad; and an increasing damping at later stages, ranging between 0-2.8 

Nms/rad (impedance de-normalized by subject mass of 70 kg) [24]. The swing phase was studied 

by Lee and Hogan [25] using an exoskeleton, Anklebot. They verified that both the stiffness and 

damping form a concave-up parabola with a minimum value around mid-swing. The average 

sagittal stiffness and damping was 40 Nm/rad and 1.2 Nms/rad, respectively. These results suggest 

that the decrease in stiffness and damping around mid-swing might facilitate toe clearance, and the 

increase in stiffness and damping after mid-swing might prepare the ankle for a ground impact 

during the heel-strike. Finally, the terminal stance was studied by Shorter et al. [26]. However, the 

estimated ankle stiffness during walking was estimated to be different of the earlier findings that 

studied the steady-state impedance. This indicates that there are more unknown factors modulating 

the ankle impedance besides ankle torque and position. 

Even though the dorsi-plantar (DP) motion is the primary focus of most studies, there are 

substantial ankle motions in all other anatomical planes during walking, such as in inversion-

eversion (IE) [27]–[30]. Thus, understanding the characteristics of the ankle impedance in different 

planes of motion is essential. Lee and Rastgaar studied the anisotropic stiffness with active muscles, 

finding that the quasi-stiffness took the form of a “peanut shape” [31], [32]. They used Anklebot 

to estimate the quasi-static stiffness of the ankle along 24 directions of rotation and for different 

combinations of muscle engagement. The stiffness was more substantial around the sagittal plane 

and smaller around the frontal plane, ranging between 10-45 Nm/rad and 5-15 Nm/rad, 
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respectively. The multi-variate study about the impedance was extended to a dynamic test, with 

stochastic analyses and larger muscle activation ranges. The DP and IE stiffness increased with the 

lower-extremity muscle activation. The growth in stiffness was approximately the same for all 

muscle activation trials, with a ratio of 3.8.  

The anisotropic ankle impedance during walking was estimated with a two Degrees of 

Freedom (DOF) vibrating platform for the first time [23]. Step torque perturbations were applied 

along different moments of the gait cycle, at 16 different axes of rotation. A 2nd order model was 

estimated via least square, resulting in the inertia, damping, and stiffness parameters of the ankle. 

During heel-strike (HS), the modulated stiffness around IE rotations is higher than around DP, 

possibly as a mechanism to increase the stability against ankle roll. After HS, the modulated 

stiffness has a major axis along PI (plantar-inversion) and DE (dorsi-eversion), with a certain 

symmetry about the subtalar joint. Both stiffness and damping reach their highest values between 

23-38% of the gait cycle. These results suggest a time-varying, multi-variable analysis of the ankle 

impedance is essential for the control of prostheses. 

For powered prostheses to modulate a time-varying impedance or simply to follow a time-

based trajectory, such as the ankle torques and angles across the gait cycle, they need to know the 

state of the user, such as the gait phase [33], [34]. In addition, many gait maneuvers are of 

substantial importance during ADL [35]. Amputees compensate for the lack of ankle motion 

control in the sagittal plane using other joints in the body, such as the hip [36]. There has been 

much work on classifying the user’s intent and features of the environment for prosthesis control. 

Another approach to detect a user’s intention with the prosthesis is via Electromyography (EMG) 

of the lower leg muscles, with many studies relating the impedance with the muscle activity [37]–

[44]. 

An emerging approach is to use exteroceptive sensors, which can measure the environment 

features directly. This can assist prostheses in adapting the behavior based on the ground terrain, 

slope [45], and flatness [46]. A ranging laser and an inertial measurement unit (IMU) attached on 

the hip has been used to estimate the terrain type and locomotion mode of able-bodied and amputee 

subjects, with a  high accuracy of 98% [47]. Krauz used a Microsoft Kinect (which creates an image 

that corresponds each pixel to the spatial distance between the camera and the point) to characterize 

nearby stairs [48]. Another unique benefit of exteroceptive sensors is that they are less dependent 
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on user’s characteristics, as demonstrated by Massalin [49]. They were able to predict ambulation 

modes using a minimal number of training subjects. Ranging sensors are also able to estimate the 

state of the sound-leg to assist the coordination between prostheses and users [50]. 

 In this dissertation, the mechanical impedance of the human ankle was studied and related 

to multiple other factors. In Chapter 2, the instrumental apparatus used to quantify multi-directional 

ankle dynamics is presented and characterized. After the experimental apparatus was evaluated, the 

ankle impedance was estimated and related to the muscle activity of the lower leg (Chapter 3), to 

operating points of angle and torque (Chapter 4), and during walking (Chapter 5). Given the 

influence of the gait state and environment to the control of prosthesis, a vision device was designed 

and evaluated for gait assistance applications (Chapter 6), and preliminary results are presented in 

Chapter 7. 
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2 Modeling of the Instrumented Walkway 

2.1 Motivation 

The Instrumented Walkway is an experimental apparatus designed to study the dynamics of the 

human ankle as they change across gait maneuvers. As seen in Figure 1, it consists of a two degrees 

of freedom (DOF) vibrating platform, a force plate (Kistler 9260AA3), a motion capture camera 

system (8 Optitrack 17W cameras), and a set of wireless surface EMG sensors (Delsys Trigno 

Wireless System). The force plate (FP), the motion capture camera system, and the EMG sensors 

are used to measure the external torque acting on the ankle, the ankle angles, and the activation of 

the calf muscles, respectively, while the vibrating platform applies ground perturbations on the 

ankle. The vibrating platform is driven by two linear motors via Bowden cables and a pulley system. 

The cable setup allows the platform to rotate around any of the horizontal axes of rotation, resulting 

in a combination of pitch and roll motions, but not a yaw motion. The construction of the Instrument 

Walkway is fully reported in Ficanha et al. [12]. 

 
(a) 

 
(b) 

Figure 1. Instrumented Walkway. (a) During a walking experiment and (b) close view of the 

vibrating mechanism. 

The Instrumented Walkway was designed to identify the dynamics of the human ankle 

without being affected by the dynamics of the actuators, except for limiting the frequency 

bandwidth of the input signal. This was accomplished by assembling a FP on top of the vibrating 

platform capable of measuring the interface forces and torques to the human subjects. By 

considering these forces and torques as the new input to the system, rather than the voltage 
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commands to the actuators, all the actuator dynamics can be disregarded during the identification 

of the human ankle. 

However, because the FP measures all the dynamics occurring above the force sensors, the 

inertial dynamics of the FP are still accounted for in the measurements. The inertial dynamics are 

substantial considering the large mass of the FP compared to the average human foot.  Therefore, 

the force and torque measurements of the FP must be compensated. This chapter describes the 

method to compensate for the dynamics of the Instrumented Walkway, specifically the inertial 

parameters of the FP, and is further used in Chapters 3 and 4. 

2.2 Method 

The inertial dynamics of the FP can be compensated from the human trials in the following 

procedure:  

1) Model the forces and torques measured by the FP as a function of the FP kinematics 

(position, velocity, and acceleration) and FP inertial parameters (moment of inertia, 

product of inertia, mass, and center of mass);  

2) Record a “calibration” experiment prior to the human trials in which an unloaded vibrating 

platform is actuated (without human subjects);  

3) Estimate the FP inertial parameters using the calibration measurements and the 

mathematical model; and  

4) For the human trials, predict and compensate the forces and torques using the previously 

estimated model and FP kinematics of the current trial. 

2.2.1 Model of the FP Dynamics 
A coordinate frame is defined in the center of the top surface of the FP, on point 𝑃𝑃 (Figure 2). The 

measured force and torque, 𝐹𝐹𝑃𝑃 and 𝑇𝑇𝑃𝑃, respectively, are defined in this coordinate frame.  

Assuming that nothing is in contact with the top surface of the FP and that the vibrating 

platform is moving the FP via an interface force and torque, the motion of the system can be 

modeled by the law of conservation of linear and angular momentum around point P: 
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Figure 2. Coordinate frame notation for the FP. Origin of the body lies in the center of the top 

surface, with x pointing towards the long body dimension and y towards the normal to the top 

surface. The measured force and torque, TP[t] and FP[t], act on the origin of the body 

When the platform is vibrated during an unloaded scenario, only the weight and the contact 

forces and torques (measured) are external actors on the body. In this case, the equation of the linear 

motion can be derived from the linear momentum, 𝑝𝑝, as 

�𝐹𝐹 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (2.1) 

𝐹𝐹𝑃𝑃 + 𝑚𝑚𝑃𝑃𝑔𝑔 =
𝑑𝑑�𝑚𝑚𝑃𝑃𝑠̇𝑠𝑃𝑃0�

𝑑𝑑𝑑𝑑
 (2.2) 

𝐹𝐹𝑃𝑃 = 𝑚𝑚𝑃𝑃�𝑠̈𝑠𝑃𝑃0 − 𝑔𝑔� (2.3) 

Similarly, the angular motion can be derived from the angular momentum about the 

moving point P, 𝐿𝐿𝑃𝑃 

�𝑇𝑇
𝑃𝑃

=
𝑑𝑑𝐿𝐿𝑃𝑃
𝑑𝑑𝑑𝑑

 (2.4) 

𝑇𝑇𝑃𝑃 + 𝑟𝑟𝑃𝑃 × 𝑚𝑚𝑃𝑃𝑔𝑔 =
𝑑𝑑�𝐼𝐼𝑃𝑃𝜔𝜔𝑃𝑃 + 𝑟𝑟𝑃𝑃 × 𝑚𝑚𝑃𝑃𝑠̇𝑠𝑃𝑃0�

𝑑𝑑𝑑𝑑
 (2.5) 
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= 𝐼𝐼𝑃𝑃𝜔̇𝜔𝑃𝑃 + 𝜔𝜔𝑃𝑃 × (𝐼𝐼𝑃𝑃𝜔𝜔𝑃𝑃) + 𝑟𝑟𝑃𝑃 × 𝑚𝑚𝑃𝑃𝑠̈𝑠𝑃𝑃0 + (𝜔𝜔𝑃𝑃 × 𝑟𝑟𝑃𝑃) × 𝑚𝑚𝑃𝑃𝑠̇𝑠𝑃𝑃0 (2.5b) 

𝑇𝑇𝑃𝑃 = 𝐼𝐼𝑃𝑃𝜔̇𝜔𝑃𝑃 + 𝜔𝜔𝑃𝑃 × (𝐼𝐼𝑃𝑃𝜔𝜔𝑃𝑃) + 𝑟𝑟𝑃𝑃 × 𝑚𝑚𝑃𝑃(𝑠̈𝑠𝑃𝑃0 − 𝑔𝑔) + (𝜔𝜔𝑃𝑃 × 𝑟𝑟𝑃𝑃) × 𝑚𝑚𝑃𝑃𝑠̇𝑠𝑃𝑃 (2.6) 

for 𝐼𝐼𝑃𝑃 = �
𝐼𝐼𝑃𝑃𝑥𝑥𝑥𝑥 𝐼𝐼𝑃𝑃

𝑥𝑥𝑥𝑥 𝐼𝐼𝑃𝑃𝑥𝑥𝑥𝑥

𝐼𝐼𝑃𝑃
𝑥𝑥𝑥𝑥 𝐼𝐼𝑃𝑃

𝑦𝑦𝑦𝑦 𝐼𝐼𝑃𝑃
𝑦𝑦𝑦𝑦

𝐼𝐼𝑃𝑃𝑥𝑥𝑥𝑥 𝐼𝐼𝑃𝑃
𝑦𝑦𝑦𝑦 𝐼𝐼𝑃𝑃𝑧𝑧𝑧𝑧

�, 

where 𝑚𝑚𝑃𝑃, 𝑟𝑟𝑃𝑃, �𝐼𝐼𝑃𝑃𝑥𝑥𝑥𝑥 , 𝐼𝐼𝑃𝑃
𝑦𝑦𝑦𝑦 , 𝐼𝐼𝑃𝑃𝑧𝑧𝑧𝑧�, and �𝐼𝐼𝑃𝑃

𝑦𝑦𝑦𝑦 , 𝐼𝐼𝑃𝑃𝑥𝑥𝑥𝑥, 𝐼𝐼𝑃𝑃
𝑥𝑥𝑥𝑥� are the inertial parameters of the FP: the mass, the 

center of mass (CoM) relative to the FP origin, the moment of inertia, and product of inertia about 

the CoM; In addition, 

𝜔𝜔𝑃𝑃 is the body angular velocity of the FP; 

𝜔̇𝜔𝐹𝐹 is the body angular acceleration of the FP; 

𝑠̇𝑠𝐹𝐹 is the linear velocity of FP origin; 

𝑠̈𝑠𝐹𝐹 is the linear acceleration of the FP origin; 

𝑠̇𝑠𝑃𝑃0 = 𝑠̇𝑠𝑃𝑃 + 𝜔𝜔𝑃𝑃 × 𝑟𝑟𝑃𝑃 is the linear velocity of the FP CoM; 

𝑠̈𝑠𝑃𝑃0 = 𝑠̈𝑠𝑃𝑃 + 𝜔̇𝜔𝑃𝑃 × 𝑟𝑟𝑃𝑃 + 𝜔𝜔𝑃𝑃 × (𝜔𝜔𝑃𝑃 × 𝑟𝑟𝑃𝑃)  is the linear acceleration of the FP CoM; 

𝑔𝑔 = [0,−9.81, 0]𝑇𝑇  𝑚𝑚/𝑠𝑠2 is the gravity acceleration vector. 

2.2.2 Experimental Estimation of the FP Inertial Parameters 

The unknown parameters from Eq. (2.3) and (2.) are estimated from a calibration experiment and 

later used to compensate the ground reaction forces and torques from the human experiments. In 

this experiment, the unloaded vibrating platform was actuated with a random signal (30 Hz update 

rate) for 30 seconds. This estimation can be solved as a problem of non-linear optimization of the 

form 

𝜃𝜃∗ ≜   argmin
𝜃𝜃

�𝜀𝜀𝜃𝜃[𝑡𝑡]𝑇𝑇𝜀𝜀𝜃𝜃[𝑡𝑡]
𝑡𝑡

 (2.7) 
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where  

𝜀𝜀𝜃𝜃[𝑡𝑡] ≜ �
𝐼𝐼𝑃𝑃𝜔̇𝜔𝑃𝑃[𝑡𝑡] + 𝜔𝜔𝑃𝑃[𝑡𝑡] × 𝐼𝐼𝑃𝑃𝜔𝜔𝑃𝑃[𝑡𝑡] + 𝑟𝑟𝑃𝑃 × 𝑚𝑚𝑃𝑃�𝑠̈𝑠𝑃𝑃0[𝑡𝑡] − 𝑔𝑔� − 𝑠̇𝑠𝑃𝑃[𝑡𝑡] × 𝑚𝑚𝑃𝑃𝑠̇𝑠𝑃𝑃0[𝑡𝑡] + 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑇𝑇𝑃𝑃[𝑡𝑡]

𝑚𝑚𝑃𝑃�𝑠̈𝑠𝑃𝑃0[𝑡𝑡] − 𝑔𝑔� + 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐹𝐹𝑃𝑃[𝑡𝑡]
� (2.8) 

𝜃𝜃 ≜  �𝐼𝐼𝑃𝑃𝑥𝑥𝑥𝑥 𝐼𝐼𝑃𝑃
𝑦𝑦𝑦𝑦 𝐼𝐼𝑃𝑃𝑧𝑧𝑧𝑧 𝐼𝐼𝑃𝑃

𝑦𝑦𝑦𝑦 𝐼𝐼𝑃𝑃𝑥𝑥𝑥𝑥 𝐼𝐼𝑃𝑃
𝑥𝑥𝑥𝑥 𝑟𝑟𝑃𝑃𝑇𝑇 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑇𝑇 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑇𝑇 �𝑇𝑇 (2.9) 

are the cost function (with implicit dependence to 𝜃𝜃) derived from the residual of Eq. (2.3) and 

(2.6), and the vector of unknown parameters, respectively. The operator ∗ [𝑡𝑡] represents a 

measurement from time 𝑡𝑡.  𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 were added to Eq. (2.) to represent a constant torque 

and force, respectively, due to sensor zeroing and bias noise. The bias noise increases steadily over 

time, but can be approximated as constant for the short duration of an average human experiment. 

This bias noise is compensated with a sensor zeroing by subtracting a constant value from the force 

and torque measurement, turning these measurements to zero (at the moment of the zeroing 

operation). However, because sensor zeroing also subtracts the force and torque components due 

to the weight, the parameters 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 must be added to correct the cost function in Eq. (2.8). 

Signal Processing. The time derivatives were numerically computed via Savitzky-Golay filter [51] 

(5th order polynomial in a 15-samples window) and the optimization solved with MATLAB’s 

fmincon function (interior-point algorithm [52]). 

2.3 Results and Discussion 

The FP inertia parameters were estimated as [35.0 ± 1.9, 131.7 ± 18.8, 119.6 ± 2.5]𝑇𝑇𝑔𝑔.𝑚𝑚2, 

[0.1 ± 1.2, 1,9 ± 0.4, 0.4 ± 1.2]𝑇𝑇𝑔𝑔.𝑚𝑚2, and [4.8 ± 1.3, −6.9 ± 2.9, 2.3 ± 1.3]𝑇𝑇𝑚𝑚𝑚𝑚 for the 

moment of inertia, the product of inertia, and the center of mass vector, respectively. The variance 

accounted for (VAF) of the torque and force reconstruction (Eq. 2.3 and 2.6) were 

[95.7 ± 1.3, 85.1 ± 12.9, 98.0 ± 0.8]𝑇𝑇 and [95.3 ± 2.7, 85.4 ± 4.3, 97.5 ± 1.3]𝑇𝑇, respectively. 

The mass parameter (mass of the components above the force sensor) was reported by the 

manufacturer to be 4.64 kg, and was fixed during the estimation. 
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Table 1. Estimates of the FP inertia parameters. Columns of each parameter represent X, Y, and Z 

components, respectively. 

 𝑱𝑱𝑷𝑷 [𝒈𝒈.𝒎𝒎𝟐𝟐] 𝑷𝑷𝑷𝑷 [𝒈𝒈.𝒎𝒎𝟐𝟐] 𝒓𝒓𝑷𝑷 [𝒎𝒎𝒎𝒎] 

Ref 34.8 131.2 97.0 0.0 0.0 0.0 0.0 -14.4 0.0 
Min 31.5 108.2 115.4 -2.2 1.2 -1.4 2.2 -10.0 -0.6 

Mean 35.0 131.7 119.6 0.1 1.9 0.4 4.8 -6.9 2.3 
Max 37.0 149.6 122.7 1.3 2.4 2.0 6.7 -1.8 3.7 

Std 1.9 18.8 2.5 1.2 0.4 1.2 1.3 2.9 1.3 

The FP moment of inertia and product of inertia were similar to an ideal box of equivalent size 

and mass. This ideal box would have a moment of inertia of [34.8, 131.2, 97.0]𝑇𝑇𝑔𝑔.𝑚𝑚2 and 

0.0 𝑔𝑔.𝑚𝑚2 product of inertia. The small estimated product of inertia (consistent with the symmetric 

shape of the body) indicates that the mass inside the FP case is well distributed. The large variance 

of 18.8 𝑔𝑔.𝑚𝑚2 for the 𝐽𝐽𝑃𝑃
𝑦𝑦 estimate is expected because the vibrating platform cannot move in this 

axis of rotation; thus, the signal to noise ratio (SNR) around this axis is small. Similarly, the 

estimated center of mass vector, 𝑟𝑟𝑃𝑃, has a high standard deviation of [1.3, 2.9, 1.3]𝑇𝑇  𝑚𝑚𝑚𝑚, indicating 

a high uncertainty. Possibly the confidence of 𝑟𝑟𝑃𝑃 could be improved if the FP underwent an 

unconstrained motion, rather than a constrained motion (pivoting about the universal joint).  

Finally, for this application, the VAF of the reconstructed (predicted) forces and torques are 

more relevant than the confidence of the inertial parameters. This implies that, to predict and 

compensate for the effects of the FP dynamics on the human experiments, the inertial forces and 

torques must be calculated accurately (high VAF), but it is not necessary that the parameters that 

contribute little to the measured forces and torques (such as the product of inertia and CoM) are 

estimated with high confidence. 
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3 Mechanical Impedance of the Human Ankle over 
Levels of Muscle Co-Contraction 

3.1 Motivation 

The human ankle is a complex joint whose motion involves multiple bones, tendons, and muscles. 

For example, ankle rotations in the DP and IE directions require the synergistic work of twelve and 

five of the lower-leg muscles, respectively. Faced with such complexities, new developments in 

machine learning have been exploring the prediction of the intended ankle motion of amputees 

using muscle contraction commands [53]–[56]. A direct application of motion prediction is the 

control of powered prosthesis via muscles of the residual limb. One example of such a controller 

developed by Wang et al. [57], who used the EMG signals to proportionally drive the DP angle of 

a prosthesis. Another implementation predicted the desired angle during walking activities using a 

nonlinear auto-regressive model from muscle signals inside the prosthesis socket [58]. 

Muscles contribute to the overall ankle motion, and with the activation of antagonistic 

muscles, it can also affect its mechanical impedance. Studies in this field have demonstrated that 

muscle contraction contributes to a significant increase in the ankle stiffness in the DP direction 

[19]. Additionally, the impedance was shown to be different depending on the axis and direction 

of rotation, and changed for various combinations of muscles being activated [31], [59]. In this 

work, the study of the ankle impedance with active muscles was extended to subjects in the standing 

pose to further the understanding of the ankle dynamics. 

3.2 Subjects 

Twelve able-bodied male subjects with no self-reported history of biomechanical or neuromuscular 

disorders were recruited (age of 27.9 ± 3.5 years, weight of 92.3 ± 27.6 kg, and height of 180.2 ± 

6.7 cm). All participants gave written informed consent to participate in this study, which was 

approved by the Michigan Technological University Institutional Review Board. 
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3.3 Experimental Procedure 

The experiment consisted of ten 70-seconds trials in which random perturbations were applied to 

the right feet of the standing subjects (Figure 3). For the duration of each trial, the subjects stood 

with feet facing one out of two directions (forward (a) or to the side (b), Figure 3) and co-contracted 

their lower-leg muscles at a fixed activation level out of 5 levels (0%, 10%, 20%, 30%, and 40% 

of the maximum voluntary contraction (MVC)). The subjects had the assistance of a real-time chart 

of their muscle activity while holding the muscle contraction level. The maximum selected co-

contraction level was 40% MVC because the average subject could not hold this level of activity 

for more than 70 seconds. The initial 10 seconds of each trial were discarded from further analyses, 

to reduce the transient effect. 

 
(a) 

 
(b) 

Figure 3. Subject in standing pose while the vibrating platform applied ground perturbations. 

EMG sensors were placed on the TA, PL, SOL, and GA EMG muscles. 

To determine the MVC of a subject, prior to the experiment, the subjects contracted their 

lower-leg at their maximum levels in pulses of 1-second for 5 to 10 times. The MVC was defined 

as the maximum recorded voltage of the TA muscle and used as a reference for the subsequent 

trials. In these subsequent trials, the subjects tried to co-contract all muscles of the lower-leg while 

looking at a real-time graph of the 20 ms rolling root-mean-square (RMS) of the TA muscle as 

visual feedback. The target MVC was overlaid on the same graph. Finally, the trials were performed 
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in random order and with rest intervals of more than one minute to reduce the effect of muscle 

fatigue on the aggregated results. 

Measurements were taken from the foot, shank, and force plate kinematics, external torques 

and forces perturbations, all sampled at 350 Hz. Additionally, the muscle activity of the tibialis 

anterior (TA), peroneus longus (PL), soleus (SOL), and gastrocnemius (GA) muscles were 

measured and sampled at 2000 Hz. These muscles were selected based on their contribution to 

ankle stabilization and rotation [15]. The EMG signals were low-passed filtered by the Delsys 

filtering software to reduce motion artifact. A detailed description of the instrumental apparatus is 

described in Chapter 2.  

The random perturbation used in this experiment was random in both the magnitude and 

directions of rotation, changing its value every 0.03 seconds. The magnitude of the signal was in 

the form of pseudo-random binary sequences and the direction was uniformly distributed across all 

combinations of dorsiflexion, plantarflexion, inversion, and eversion rotations. Note that the 

dynamics of the actuators acted as a filter to this signal, limiting the bandwidth of the random input. 

A sample of the signal is shown in Figure 4 in the time and frequency domain. 

 
(a) 
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(b) 

Figure 4. Ankle angle perturbation. Represented in the (a) time domain and (b) frequency domain. 

3.4 Standing Ankle Impedance Estimation 

The multivariable mechanical impedance of the ankle was estimated using the differential 

equations of motion of the lower leg that included the ankle impedance coefficients and the inertia 

of the foot. This method approximates the foot as a rigid body  

�𝑇𝑇
𝐹𝐹

=
𝑑𝑑𝐿𝐿𝐹𝐹
𝑑𝑑𝑑𝑑

 (3.1) 

𝑇𝑇𝐹𝐹 + 𝑟𝑟𝐹𝐹 × 𝑚𝑚𝐹𝐹𝑔𝑔 + 𝑇𝑇𝑍𝑍�𝜃𝜃, 𝜃̇𝜃� =
𝑑𝑑�𝐼𝐼𝑃𝑃𝜔𝜔𝑃𝑃 + 𝑟𝑟𝑃𝑃 × 𝑚𝑚𝑃𝑃𝑠̇𝑠𝑃𝑃0�

𝑑𝑑𝑑𝑑
 (3.2a) 

= 𝐼𝐼𝐹𝐹𝜔̇𝜔𝐹𝐹 + 𝜔𝜔𝐹𝐹 × (𝐼𝐼𝐹𝐹𝜔𝜔𝐹𝐹) + 𝑟𝑟𝐹𝐹 × 𝑚𝑚𝐹𝐹𝑠̈𝑠𝐹𝐹0 + (𝜔𝜔𝐹𝐹 × 𝑟𝑟𝐹𝐹) × 𝑚𝑚𝐹𝐹𝑠̇𝑠𝐹𝐹0 (3.2b) 

𝑇𝑇𝐹𝐹 = 𝐼𝐼𝐹𝐹𝜔̇𝜔𝐹𝐹 + 𝜔𝜔𝐹𝐹 × (𝐼𝐼𝐹𝐹𝜔𝜔𝐹𝐹) + 𝑟𝑟𝐹𝐹 × 𝑚𝑚𝐹𝐹�𝑠̈𝑠𝐹𝐹0 − 𝑔𝑔� + (𝜔𝜔𝐹𝐹 × 𝑟𝑟𝐹𝐹) × 𝑚𝑚𝐹𝐹𝑠̇𝑠𝐹𝐹 + 𝑇𝑇𝑍𝑍�𝜃𝜃, 𝜃̇𝜃� (3.3) 

where 

𝑚𝑚𝐹𝐹 is the foot mass; 

𝑟𝑟𝐹𝐹 is the center of mass relative to the foot origin; 
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  𝐼𝐼𝐹𝐹 = �
𝐼𝐼𝐹𝐹𝑥𝑥𝑥𝑥 𝐼𝐼𝐹𝐹

𝑥𝑥𝑥𝑥 𝐼𝐼𝐹𝐹𝑥𝑥𝑥𝑥

𝐼𝐼𝐹𝐹
𝑥𝑥𝑥𝑥 𝐼𝐼𝐹𝐹

𝑦𝑦𝑦𝑦 𝐼𝐼𝐹𝐹
𝑦𝑦𝑦𝑦

𝐼𝐼𝐹𝐹𝑥𝑥𝑥𝑥 𝐼𝐼𝐹𝐹
𝑦𝑦𝑦𝑦 𝐼𝐼𝐹𝐹𝑧𝑧𝑧𝑧

� is the inertia matrix of the foot relative to the CoM; 

�𝐼𝐼𝐹𝐹𝑥𝑥𝑥𝑥 , 𝐼𝐼𝐹𝐹
𝑦𝑦𝑦𝑦 , 𝐼𝐼𝐹𝐹𝑧𝑧𝑧𝑧� are the moments of inertia of the foot, relative to the CoM; 

�𝐼𝐼𝐹𝐹
𝑦𝑦𝑦𝑦 , 𝐼𝐼𝐹𝐹𝑥𝑥𝑥𝑥 , 𝐼𝐼𝐹𝐹

𝑥𝑥𝑥𝑥� are the products of inertia of the foot, relative to the CoM; 

𝜔𝜔𝐹𝐹 is the body angular velocity of the foot; 

𝜔̇𝜔𝐹𝐹 is the body angular acceleration of the foot; 

𝑠̇𝑠𝐹𝐹 is the linear velocity of foot origin; 

𝑠̈𝑠𝐹𝐹 is the linear acceleration of the foot origin; 

𝑠̇𝑠𝐹𝐹0 = 𝑠̇𝑠𝐹𝐹 + 𝜔𝜔𝐹𝐹 × 𝑟𝑟𝐹𝐹 is the linear velocity of the foot CoM and, 

𝑠̈𝑠𝐹𝐹0 = 𝑠̈𝑠𝐹𝐹 + 𝜔̇𝜔𝐹𝐹 × 𝑟𝑟𝐹𝐹 + 𝜔𝜔𝐹𝐹 × (𝜔𝜔𝐹𝐹 × 𝑟𝑟𝐹𝐹)   is the linear acceleration of the foot CoM. 

 𝑇𝑇𝐹𝐹 is the external torque acting on the ankle, compensated by the FP inertia, calculated as 

𝑇𝑇𝐹𝐹 = 𝑇𝑇𝑃𝑃 − 𝑇𝑇𝑖𝑖𝑖𝑖 + (𝑠𝑠𝑃𝑃 − 𝑠𝑠𝐹𝐹) × (𝐹𝐹𝑃𝑃 − 𝐹𝐹𝑖𝑖𝑖𝑖) (3.4) 

where 𝑇𝑇𝑃𝑃, 𝐹𝐹𝑃𝑃, 𝑇𝑇𝑖𝑖𝑖𝑖, 𝐹𝐹𝑖𝑖𝑖𝑖, 𝑠𝑠𝑃𝑃, and 𝑠𝑠𝐹𝐹 are the external ground torque, the external ground force, inertial 

FP torque (2.3), inertia FP force (2.6), FP position, and foot position, respectively. 

The variable 𝑇𝑇𝑍𝑍�𝜃𝜃, 𝜃̇𝜃� is the torque due to the mechanical ankle impedance. The ankle was 

modeled as a gimbal joint with springs and viscous dampers on each of the three consecutive 

rotating axes in the order XYZ: first a rotation in the shank’s X (IE) axis, then on the new Y (ML) 

axis, and finally on the foot’s Z (DP) axis. These rotations are represented as the ankle rotation 

vector, 𝜃𝜃 ∈ ℝ3, and generate torque in the form 

𝑇𝑇𝑍𝑍�𝜃𝜃, 𝜃̇𝜃� = 𝐽𝐽𝑋𝑋𝑋𝑋𝑋𝑋−1 (𝜃𝜃)��
𝐾𝐾𝐼𝐼𝐼𝐼 0 0

0 𝐾𝐾𝑀𝑀𝑀𝑀 0
0 0 𝐾𝐾𝐷𝐷𝐷𝐷

� 𝜃𝜃 + �
𝐵𝐵𝐼𝐼𝐼𝐼 0 0
0 𝐵𝐵𝑀𝑀𝑀𝑀 0
0 0 𝐵𝐵𝐷𝐷𝐷𝐷

� 𝜃̇𝜃� (3.5) 
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𝐽𝐽𝑋𝑋𝑋𝑋𝑋𝑋−1 (𝜃𝜃) =
1

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑌𝑌
�

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑍𝑍 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑍𝑍 0
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑍𝑍 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑍𝑍 0
−𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑍𝑍 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑍𝑍 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑌𝑌

� (3.6) 

where 𝐽𝐽𝑋𝑋𝑋𝑋𝑋𝑋−1 (𝜃𝜃) is the mapping between the body angular velocity and the Euler (XYZ) angle rates 

[60], which, conversely, maps a torque from Euler coordinates to foot coordinates. 

The time-derivatives were calculated with a Sarvitzky-Golay filter [51] with 11-samples 

window and a 5th order polynomial. In addition, the same filter was used to smooth all the other 

kinematic signals. This filter approximates the samples of a signal within a moving window as a 

polynomial and calculates derivatives with good noise rejection.  

The best-fit estimates for the unknown parameters were calculated with a non-linear 

optimization method, Sequential Quadratic Programming [52], by substituting the measurements 

and computed derivatives into Eq. 1, and reducing the mean-square-error of the equation. In 

addition, to account for sensor biases and time-varying impedance different values of 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 

K and B were estimated in small sample windows. Therefore, the vector of unknown parameters is 

𝑥𝑥 ≡ �𝐼𝐼𝐹𝐹𝑥𝑥𝑥𝑥 , 𝐼𝐼𝐹𝐹
𝑦𝑦𝑦𝑦 , 𝐼𝐼𝐹𝐹𝑧𝑧𝑧𝑧 , 𝐼𝐼𝐹𝐹

𝑦𝑦𝑦𝑦 , 𝐼𝐼𝐹𝐹𝑥𝑥𝑥𝑥, 𝐼𝐼𝐹𝐹
𝑥𝑥𝑥𝑥 ,𝑚𝑚𝐹𝐹 , 𝑟𝑟𝐹𝐹𝑇𝑇 , 𝑧𝑧0%𝑇𝑇 𝑧𝑧10%𝑇𝑇 , 𝑧𝑧20%𝑇𝑇 , 𝑧𝑧30%𝑇𝑇 , 𝑧𝑧40%𝑇𝑇 �𝑇𝑇 (3.7) 

for 

𝑧𝑧𝑖𝑖𝑇𝑇 ≡ �𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖
𝑇𝑇 ,𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖

𝑇𝑇 ,𝐾𝐾𝑖𝑖𝑇𝑇 ,𝐵𝐵𝑖𝑖𝑇𝑇�
𝑇𝑇

 (3.8) 

where 𝑧𝑧𝑖𝑖 is the set of biases and impedances of trial i.  

Considering the impedance and bias might change within a trial, each trial was split in 40 

time-windows of 2-seconds of duration (25% overlap) and used to estimate an independent 

solution, x. Therefore, each subject had 40 estimates of foot inertia, and 400 estimates of ankle 

impedance. 

Once the unknown parameters are estimated, the model can be evaluated measuring the mean 

absolute error (MAE) of the torque as 



www.manaraa.com

17 

𝑀𝑀𝑀𝑀𝐸𝐸𝑥𝑥 =
1
𝑁𝑁
��𝑻𝑻𝐹𝐹

[𝑖𝑖](𝒙𝒙) − 𝑻𝑻𝑟𝑟𝑟𝑟𝑟𝑟
[𝑖𝑖] �

1

𝑁𝑁

𝑖𝑖=1

 (3.9) 

where 𝑻𝑻𝐹𝐹
[𝑖𝑖](𝒙𝒙) and 𝑻𝑻𝑟𝑟𝑟𝑟𝑟𝑟

[𝑖𝑖]  are the estimated and measured ground reaction torques around the ankle 

(𝑇𝑇𝐹𝐹 from Equation 3.3), for the  𝑖𝑖𝑡𝑡ℎ of N samples in a trial. The normalized mean square error (R2) 

is another measure of model confidence, but it is normalized by the overall variance of the reference 

signal. 

3.5 Results and Discussion 

3.5.1 Evaluation of the Muscle Activity 

A summary of the normalized EMG signals during each co-contraction trial is presented in Figure 

5. The RMS of the EMG signal across the trial is calculated for each subject and grouped with the 

respective co-contraction trial in a boxplot. Therefore, the presented percentile statistics are 

calculated across the subject population (does not account for variation across the trial). The EMG 

was z-score normalized within each subject to allow comparisons between subjects.  

The median EMG activity increased linearly as intended on the experimental design, 

especially from the TA muscles. The TA was the only muscle directly supervised during the 

experiment, so it is expected to follow the linear pattern. However, the PL, GA, and specially SOL 

showed more deviations from a linear increase, suggesting that some subjects could not increase 

the muscle activity proportionally (at least without real-time feedback, as provided for TA). 
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Figure 5. Normalized muscle activity for each of the co-contraction trials. The percentiles of the 

box plots are computed across the RMS of the EMG signal for each subject. 

3.5.2 Mechanical Impedance of the Ankle during Co-Contraction 

The external torque was predicted using the estimated impedance parameters and resulted in a MAE 

torque of 2.1 ± 0.3 Nm (average and the standard deviation were calculated across all subjects and 

trials). The model R2 values were above 0.8 and 0.7 for most subjects along DP and IE anatomical 

axes, respectively, and above 0.5 for all subjects, in any co-contraction level (Figure 6). The DP R2 

decreased with increasing co-contraction levels, while IE R2 peaked at the 20% MVC trial and 

showed the lowest overall fitness at 0% MVC. 
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          (a) 

 
           (b) 

 
             (c) 

 
           (d) 

Figure 6. Mechanical ankle impedance in each of the co-contraction trials. The impedance was 

parameterized with a (a) stiffness, (b) damping, and (c) inertia coefficients, and evaluated with 

the (d) R2 of the response ankle torque. 

The DP stiffness component of the impedance significantly increased with the co-

contraction level, while the median of the IE stiffness, DP and IE damping, and DP and IE inertia 

remained relatively constant (Table 2). All stiffness and damping parameters were significantly 

greater than zero and had similar values to the non-loaded ankle conditions [20], [59]. The DP 

stiffness range was four times greater than the IE stiffness range, while DP damping was higher 

than IE damping in all conditions, consistent with previous results [59]. The insensitivity of the IE 

stiffness to muscle contraction and co-contraction was also observed in previous studies [31]. 
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Table 2. Linear regression of impedance as a function of muscle contraction. * represents 

coefficients significantly different than zero (t-test, significance p < 0.05) 

 𝑲𝑲𝑫𝑫𝑫𝑫 𝑲𝑲𝑰𝑰𝑰𝑰 𝑩𝑩𝑫𝑫𝑫𝑫 𝑩𝑩𝑰𝑰𝑰𝑰 
𝑁𝑁𝑁𝑁/𝑟𝑟𝑟𝑟𝑟𝑟 𝑁𝑁𝑁𝑁𝑁𝑁/𝑟𝑟𝑟𝑟𝑟𝑟 

Passive Impedance (Intercept) 154.7* 98.5* 0.67* 0.27* 

Impedance change (per % MVC) 5.2* 1.3 0.01 0.0 

Line Fit 𝑹𝑹𝟐𝟐 0.42 0.1 0.0 0.0 

 

3.5.3 Pair-wise Correlation Between Impedance Parameter and Muscle Activation 

Possibly the large impedance variance amongst subjects and the not-significant impedance change 

(per % MVC), as shown in Figure 6, could have been caused by subjects failing to hold muscle 

activity levels consistently (Figure 5). Therefore, it might be worthwhile to search for a muscle-

impedance relationship for each subject separately. To that end, a pair-wise relationship between 

one muscle to one impedance parameter was tested with a linear model. For each subject, the EMG 

RMS was calculated along the 2-second time-window. A single representative point of EMG and 

impedance was calculated as the median across all the time-windows, resulting in five points in an 

EMG-impedance graph (that is, five points in a Cartesian plane, where the x-axis is EMG RMS, 

and the y-axis is impedance parameter). The medians were used in this analysis to address the 

variation of the EMG and impedance within each trial. 

The linearity of these points was evaluated with an Analysis of Variance (ANOVA, p ≤ 

0.05) for linear models. All the combinations of muscles and impedances were analyzed, totaling 

sixteen linear models per subject. Two subjects were removed from this analysis because they 

presented irregular EMG measurements. The percentage of subjects presenting linear correlation is 

shown in Table 3.  
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Table 3. Evaluation of linearity between muscle contraction and impedance parameter. 

Percentage of subjects who presented linear correlation between medians of EMG RMS and 

average impedance. 

  Impedance Parameter 
   KDP BDP KIE BIE 

E
M

G
 TA 40% 40% 20% 0% 

PL 40% 20% 20% 0% 
SOL 20% 10% 20% 20% 

GA 40% 20% 40% 0% 

The DP stiffness parameter showed the most frequency of linear correlations with other 

muscles (up to 40% for some muscles), while IE damping showed the least (0% for most muscles). 

Interestingly, DP damping and IE stiffness showed a high frequency of correlation to TA and GA 

muscles’ EMG, respectively, even though they have low overall change per MVC (Table 2). This 

suggests that muscle activity may be a good predictor for the mechanical impedance of the ankle; 

however, a predictor model would require a more complex structure than a linear model. 
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4 Mechanical Impedance of the Human Ankle over Static 
Poses of the Gait Cycle 

4.1 Motivation 

The characterization of the mechanical impedance has been a rich field of research for many 

decades due to the complexity of the ankle joint complex. For example, the ankle has been shown 

to respond differently around different mean ankle angles and torques. Weiss et al. identified the 

DP mechanical impedance of the ankle as a 2nd order model whose parameters are dependent on 

the mean ankle angle and torque [18], [19]. They verified that when holding the same ankle 

position, stiffness increases linearly with the torque. The reflexive properties of the impedance also 

changed, arising from complex neural mechanisms [61]. In addition, the damping coefficient 

increased by a factor of eight at extreme ankle angles away from the neutral angle. Not only does 

the magnitude of the rotation affect the impedance, but also the direction, as reported by Hyunglae 

et al. [31], [59]. The polar plot of the stiffness (versus the ankle axis of rotation) took the form of a 

peanut shape with the longer axis pointing close to the DP axis. In a static experiment, the stiffness 

for dorsiflexion was higher than in plantar-flexion [31], showing that ankle rotations in the same 

axis, but in different directions, also have different dynamic responses.  

These studies have been extended to the ankle impedance in the standing position, which 

accounts for the complexity of body sway and forces loading on the ankle. Considerable body sway 

was found to increase the value of the stiffness, possibly as an active neural control response to 

stabilize the body pose [62]. In addition, the non-neural response, referred to as the intrinsic 

stiffness, increases when the body sways forward [63]. However, the angle deviations arising from 

body sway are minimal compared to the full range of the ankle angle during ADLs, such as walking. 

In this chapter, the mechanical impedance of the ankle was estimated while subjects stood in 

varying angles and torques operating points, with similar values found during walking. 
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4.2 Subjects 

Fifteen subjects with no self-reported neuromuscular or biomechanical disorders participated in 

this experiment (ages of 28.0 ± 4.4, mass of 79.0 ± 11.1 kg, and height of 178.0 ± 7.7 cm). The 

subjects gave written consent to participate in the experiment, which was approved by the Michigan 

Tech Institutional Review Board. 

4.3 Experimental Procedure 

The Instrumented Walkway (Chapter 2) was used in this experiment. In addition, EMG sensors 

(Delsys Trigno wireless™, 2000 Hz sampling rate) were used to measure the lower extremity 

muscle activity. The sensors were placed on 5 muscles; including the TA, the PL, the SOL, the 

gastrocnemius lateral (GAL), and the gastrocnemius medial (GAM). These muscles were selected 

based on their antagonistic properties and their contribution to motion in the DP and IE axes [64]. 

This study analyzed fours stationary poses: Foot Flat (FF), Midstance (MS), Post Midstance 

(MS+), and Terminal Stance (TS), as shown in Figure 7. Each of these poses has a different 

combination of ankle angle and foot center of pressure (CoP) to emulate the state of the body in 

various stages of the gait cycle. However, different from walking, the subjects remained stationary 

at each one of the poses throughout a full trial. The experiment was divided into three rounds, each 

with one trial per pose; these trials were executed in random order and lasted 35 seconds each, with 

a 1-minute rest interval. 

 
FF MS MS+ TS 

Figure 7. Stationary poses of the gait cycle. The poses emulate moments of the stance phase of 

the walk. The CoP increases along the anterior-posterior direction for the FF, MS, MS+, and TS 

poses, from left to right. The red dot indicates the CoP location. 
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To have consistency between repeated trials, the placement of the feet, the CoP’s anterior-

posterior position (Equation 4.1), and the weight distribution were supervised. The right foot was 

placed on the force plate inside a drawn outline of the foot, while the left foot was behind (FF), 

aligned (MS, MS+), or in front (TS) of the right foot. For the FF and TS poses, the stance length 

(anterior-posterior distance between the feet) was defined as 40% of the subjects’ height. Lastly, 

the subjects relied on real-time measurements on a monitor screen to maintain the CoP of the 

perturbed foot around a desired target location and hold equal weight distribution between both 

legs. The target CoP locations were 30.6%, 40.5%, 53.0%, and 63.6% of the foot length, from the 

heel, for the poses FF, MS, MS+, and TS, respectively.  

𝐶𝐶𝐶𝐶𝑃𝑃𝑥𝑥 = (𝑇𝑇𝑃𝑃𝑧𝑧/𝐹𝐹𝑃𝑃
𝑦𝑦 − 𝑑𝑑𝑃𝑃.ℎ𝑒𝑒𝑒𝑒𝑒𝑒) /𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (4.1) 

where 𝑑𝑑𝑃𝑃.ℎ𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 are the foot length and distance from heel to the center of FP. 𝑇𝑇𝑃𝑃 and 𝐹𝐹𝑃𝑃 

are the torque and force measurements by the force plate. 

The ground perturbations were in the form of pulse trains of random rotating axis (0-360º), 

period (0.03-0.2 s), and duration (0.9-1.1 s); and between consecutive pulse trains, the vibrating 

platform was inactive for a random pause time (0.9-1.1 s), as shown in Figure 8. The use of random 

durations and pause periods was intended to decrease reflex responses and predictive muscle 

contraction by the subjects. 

 
Figure 8. Example of ground perturbation. 

0 0.5 1 1.5 2 2.5 3 3.5 4

time [s]

-20

-10

0

10

20

30

pe
rtu

rb
at

io
n 

to
rq

ue
 [N

m
]

IE
ML
DP



www.manaraa.com

25 

4.4 Ankle Impedance Estimation 

The ankle impedance was modeled as a 2nd order system (with stiffness, damping, and inertia), 

acting in parallel to the foot inertia. In addition, the ankle impedance and foot inertia were estimated 

for multiple rotating axes. For each rotating axis, a subset of perturbations was selected and used 

on a torque regression problem, resulting in the impedance parameters for that axis. Each step of 

this method is explained in detail next. 

The external torque acting on the ankle was compensated for the force plate inertia, as 

described in Chapter 2. By subtracting this torque component from the calculated torque working 

on the subject ankle (Equation 4.2), the dynamic system can be reduced to a small inertia 

component (the foot) connected to a mechanical impedance (the ankle impedance). 

𝑇𝑇𝐹𝐹[𝑡𝑡]  ≜ 𝑇𝑇𝑃𝑃[𝑡𝑡] − 𝑇𝑇𝑃𝑃0 [𝑡𝑡] + (𝑝𝑝𝑃𝑃[𝑡𝑡] − 𝑝𝑝𝐹𝐹[𝑡𝑡]) × �𝐹𝐹𝑃𝑃[𝑡𝑡] − 𝐹𝐹𝑃𝑃0 [𝑡𝑡]� (4.2) 

 The ankle impedance reacts to changes in the ankle angle as a 2nd order model; In other 

words, it reacts with a torque proportional to a change in angle, velocity, and acceleration. The 

neutral position of the angle-proportional component (or stiffness) is the ankle angle in which the 

impedance stabilizes with zero net torque. This angle is defined as 𝑞𝑞0 and is calculated as the ankle 

angle at the onset of a perturbation (Figure 9). 

 
Figure 9. Coordinate frame notation for the foot. Foot origin is on the ankle center, with x 

pointing towards the long axis of the foot, parallel to the ground, and y pointing upwards. The 

orientation of the foot in respect to the shank is composed by a mean angle 𝑞𝑞0 and a small 

rotation 𝑞𝑞[𝑡𝑡] due to the ground perturbation. 
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To calculate the ankle angles during the perturbation, the orientation between the shin and 

foot, represented as a rotation matrix, 𝑅𝑅𝐹𝐹[𝑡𝑡] = 𝑅𝑅𝑆𝑆[𝑡𝑡]𝑅𝑅𝑞𝑞0𝑅𝑅𝑞𝑞[𝑡𝑡],  is decomposed into two 

transformations: the neutral position rotation matrix, 𝑅𝑅𝑞𝑞0 ∈ 𝑆𝑆𝑆𝑆(3), at a time 𝑡𝑡0, from the onset of 

the perturbation; and a small angular displacement, 𝑅𝑅𝑞𝑞[𝑡𝑡] ∈ 𝑆𝑆𝑆𝑆(3), due to the perturbation. The 

impedance is estimated based on this small angular displacement, 𝑞𝑞[𝑡𝑡] (Figure 10.a). 

𝑅𝑅𝑞𝑞0 = 𝑅𝑅𝑆𝑆𝑇𝑇[𝑡𝑡0]𝑅𝑅𝐹𝐹[𝑡𝑡0] (4.3) 

𝑅𝑅𝑞𝑞[𝑡𝑡] = 𝑅𝑅𝑞𝑞0
𝑇𝑇 𝑅𝑅𝑆𝑆𝑇𝑇[𝑡𝑡]𝑅𝑅𝐹𝐹[𝑡𝑡] (4.4) 

The DP and IE ankle angles are defined as the Z and X rotations of the Euler angle (XYZ) 

representation of 𝑅𝑅𝑞𝑞[𝑡𝑡]. The conversion between the rotation matrix to Euler angles is presented 

𝑞𝑞[𝑡𝑡] = �
− atan�𝑅𝑅𝑞𝑞

2,3[𝑡𝑡]/𝑅𝑅𝑞𝑞
3,3[𝑡𝑡]�

asin �𝑅𝑅𝑞𝑞
2,3[𝑡𝑡]�

− atan�𝑅𝑅𝑞𝑞
1,2[𝑡𝑡]/𝑅𝑅𝑞𝑞

1,1[𝑡𝑡]�
� (4.5) 

Finally, the ankle impedance was defined as a 2nd order model and estimated for every axis 

of rotation, 𝜙𝜙. For this estimation, the external torque, ankle angle, and foot kinematics must be 

converted to a coordinate frame aligned to the axis of rotation 𝜙𝜙. This is achieved by converting 

the signal to the foot frame, then rotating around the Y-axis (see Figure 9 for coordinate frame 

definition) by an angle 𝜙𝜙. An angle 𝜙𝜙 of 0º, 90º, 180º, and 270º correspond to ankle rotations on 

eversion, dorsiflexion, inversion, and plantarflexion, respectively. 

 Suppose all the variables were converted to the axis of rotation of the perturbation, the 

impedance is modeled as  

𝑇𝑇𝐹𝐹𝑥𝑥[𝑡𝑡] ≜  𝐾𝐾𝑞𝑞𝑥𝑥[𝑡𝑡] + 𝐵𝐵𝑞̇𝑞𝑥𝑥[𝑡𝑡] + 𝐽𝐽𝑞̈𝑞𝑥𝑥[𝑡𝑡] + 𝛽𝛽1𝜔̇𝜔𝐹𝐹
𝑧𝑧[𝑡𝑡] + 𝛽𝛽2𝑠̈𝑠𝐹𝐹𝑧𝑧[𝑡𝑡] + 𝛽𝛽3𝑠̈𝑠𝐹𝐹

𝑦𝑦[𝑡𝑡] (4.6) 

where 𝐾𝐾, 𝐵𝐵, and 𝐽𝐽 are the stiffness, damping, and inertia, respectively. 𝜔̇𝜔𝐹𝐹 and 𝑠̈𝑠𝐹𝐹 are the angular 

and linear acceleration of the foot. The operators with the superscript ∗𝑥𝑥,  ∗𝑦𝑦 and ∗𝑧𝑧 select the 𝑥𝑥, y, 

and 𝑧𝑧 scalar components from the ℝ3 vectors, respectively. In addition, because the foot inertia is 

numerically small [65] compared to the impedance components, only the angular and linear 
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acceleration acting on the plane of motion were considered in the impedance model. The parameters 

𝛽𝛽𝑖𝑖 are a combination of the inertia parameters of the foot and are not included in this analysis. 

Signal Processing. The impedance parameters were estimated for each subject, at each 

pose, and around each rotating axis, combining samples from ten perturbations (0.8 s window 

around each perturbation, starting at the onset of perturbation), and solving via Least Square 

Regression to result in a single impedance parameter set. Only the ten perturbations whose axes of 

rotation were the closest to the ankle rotation in question were used. To reduce the effects of low-

frequency active ankle torque and high-frequency noise in the estimation, a band-pass filter (3-35 

Hz, 5th Order Butterworth) was applied on 𝑇𝑇𝐹𝐹, 𝑞𝑞, 𝑞̇𝑞, 𝑞̈𝑞, 𝜔̇𝜔𝐹𝐹, and 𝑠̈𝑠𝐹𝐹 (Figure 10.c-10.d). All the 

derivatives were numerically calculated via Savitzky-Golay filter (5th order polynomial in a 15-

samples window). The pipeline of this impedance method is shown in Figure 10. 
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(e) 

Figure 10. Stages of the ankle impedance estimation. (a) ankle angle due to the perturbation, (b) 

input torque acting on ankle without the FP inertia torques, (c-d) filtered angles and torques, with 

region of interest highlighted, and (e) the prediction of the torque using estimated ankle 

impedance model. 

Outlier Removal. Finally, to account for the modulation of impedance due to sudden muscle 

contractions [66], samples with an absolute residual larger than 2.5 times the standard deviation of 

the residual were discarded as outliers; then the regression was recalculated. This process was 

repeated until there were no new outliers (11% of samples were rejected, and all impedance models 

had at least 65% inliers). 

4.5 Results and Discussion 

4.5.1 Range of Ankle Torque and Angle 

The average CoP position in the anterior-posterior direction was 28.1% ± 1.6%, 40.7% ± 1.2%, 

52.7% ± 2.0%, and 64.9% ± 2.9% of the foot length, for FF, MS, MS+, and TS, respectively. The 

small deviation is expected since the subjects had real-time feedback of their CoP during the 

experiment. The torque also increased monotonically, but with higher variance (0.06 ± 0.04 Nm/kg, 

0.25 ± 0.03 Nm/kg, 0.40 ± 0.05 Nm/kg, and 0.60 ± 0.06 Nm/kg for FF, MS, MS+, and TS, 

respectively) and only varied the plantarflexion torque for all poses. On the other hand, the ankle 

angle was in plantarflexion at FF (-11.9º ± 3.4º), stayed at a neutral angle for MS (0.5º ± 3.0º) and 

MS+ (1.8º ± 3.7º), and in dorsiflexion at TS (10.7º ± 2.8º).  
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Figure 11. Mean angle and mean torque for the different stationary poses 

4.5.2 Anisotropic Ankle Impedance 

The average ankle stiffness and variance accounted for is presented in Figure 12. The DP stiffness 

substantially increased as the CoP moved forward, ranging from approximately 1.2 Nm/rad/kg to 

5.0 Nm/rad/kg (4-times increase). On the other hand, the IE stiffness varied by less than 50%. The 

invariance of IE stiffness was also noticed by Hyunglae et al. [31], [59]. In this experiment, the 

ankle angle did not change substantially in the IE direction. This small range of motion in IE might 

explain the invariance of IE stiffness. For the FF pose, the impedance was larger at the motion 

around 45 degrees (a combination of eversion and dorsiflexion), while for other poses the 

impedance was mostly symmetric across the sagittal and frontal planes. 
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(a) 

 
(b) 

Figure 12. Anisotropic ankle stiffness for four standing poses. (a) Stiffness and (b) VAF. 

The average VAF was above 90% for MS and MS+ and above 80% for FF and TS. One 

explanation for the lower VAF is that at the FF and TS poses, the subjects had to extend their 

stances in the anterior-posterior direction, making their balance less stable. To actively stabilize the 

stance, they had to generate an active torque around the ankle, which was not accounted on the 

impedance model (Equation 4.6). 

The stiffness determined in this study is smaller than the respective stiffness in supine, non-

loaded, ankle conditions, as reported by Weiss et al. [66]. This difference in stiffness suggests that 

factors other than ankle angle and torque, such as the force acting on the ankle, might affect the 

ankle stiffness. Alternatively, the decrease in stiffness might be caused by the active dynamics of 

subjects balancing in an upright pose. Future work can further understand the source of this 

behavior. 
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5 Time-Varying Mechanical Impedance of the Human 
Ankle across the Stance Phase 

5.1 Motivation 

Since a specific group of muscles is used to move the ankle in particular directions, it is 

hypothesized that the impedance of the ankle depends on the direction of the ankle rotation due to 

an external perturbation. Therefore, the goal of this experiment was to estimate the time-varying 

impedance of the ankle for these different rotations. Considering that the ankle impedance depends 

on the axis of rotation of the ankle (see Chapter 3), sixteen axis-dependent impedance models were 

developed. In other words, the ankle impedance estimated in this work is a function of time and 

ankle axis of rotation. 

5.2 Subjects 

Four male subjects (age and Body Mass Index ranging from 25 to 31 years and 29.4 kg/m2 to 25.6 

kg/m2, respectively) with no self-reported history of neuromuscular or biomechanical disorders 

were recruited for this experiment. The subjects gave written consent to participate in the 

experiment, which was approved by Michigan Tech’s Institutional Review Board. 

5.3 Experimental Protocol 

The vibrating platform applied step function torque perturbations to the ankle along sixteen axes 

of rotation (0º to 337.5º in 22.5º increments), in which 0º, 90º, 180 º, and 270º refer to ankle angle 

perturbations in eversion (E), dorsiflexion (D), inversion (I), and plantarflexion (P), respectively 

(Figure 13.b).  

Ground torque perturbations in the form of step inputs acted on the ankle in sixteen axes 

of rotation. For each perturbation, the measurements of the ankle angle and torque were projected 

to the plane of rotation of the correspondent perturbation for the subsequent impedance calculation. 

Note that the measurements were grouped based on the perturbation direction, not overall ankle 

motion direction. For example, at push-off, when the ankle undergoes a fast change in P, the D 
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torque perturbation may not move the foot into dorsiflexion, but instead will reduce the amount of 

plantarflexion of the ankle from the unperturbed gait curve.  

 
(a) 

 
(b) 

Figure 13. Axes of rotation. (a) Subject stepping on the force plate during walking experiment. 

(b) Axes of rotation of perturbations applied to the ankle. 

It was found, experimentally, that 100 steps at each of the 16 axes of perturbation is 

sufficient to converge to a result, even after removing about 6% of the steps as outliers, resulting 

in 1600 measured steps per subject. The experiment consisted of 16 trials of 100 steps (equally 

divided into 2 consecutive days of tests), with rest between trials. For each measured step, the 

subjects walked 3 steps on the first half of the walkway, completing their 4th step on the vibrating 

platform, and continued walking for 3 more steps to near the end of the walkway. Next, they turned 

around and repeated the procedure in the opposite direction. This walking procedure was repeated 

until 100 perturbed steps were measured. To reduce variations in walking speed and stance 

duration, a metronome was used at a pace chosen by the subject which was on average 96.6 ± 2.2 

steps per minute. 

Each perturbation occurred around a random axis (out of the possible 16 axes of rotation), 

in a random stage of the stance phase, to contain reflexive dynamics and preventive reactions by 

the subject. The vibrating platform preloads the actuators prior to the subject making contact, then 

actuates in full torque at a random time of the stance phase. The stance duration was measured prior 

in a calibration trial (for each subject). The perturbations were configured to cover the full stance 

cycle; therefore, it could miss the subject if the measured gait cycle was too short, too late, or too 
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early. And in these cases, the failed perturbations were excluded from the impedance estimation. 

The average ankle rotations due to the perturbations across the 16 axes of perturbations and across 

all subjects were 1.2° ± 0.8°. 

5.4 Identification of the Time-Varying Ankle Impedance 

The steps were separated into 16 groups, according to the type of perturbation applied to the step, 

resulting in 100.0 ± 11.1 steps per group. The ankle angle and torques were converted to the foot 

coordinate frame then rotated along the foot’s Y-axis (pointing up) by an angle 𝜙𝜙, then the X-axis 

component of the rotated axis was selected. In other words, the torque and angle were projected to 

the plane of rotation. This calculation was performed on each of the sixteen groups. 

𝒒𝒒𝑅𝑅 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0 1 0
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�

𝑇𝑇

𝒒𝒒 (5.1) 

where 𝜙𝜙, 𝒒𝒒 𝜖𝜖 ℝ3, and 𝒒𝒒𝑅𝑅𝜖𝜖 ℝ3 are the axis of rotation in question, a variable represented in the foot 

frame (either ankle torque or angle), and the same variable represented in the coordinate frame of 

the rotation.  

The outlier steps were removed based on three criteria: the stance duration, the average 

angle, and the average torque. Each criterion was evaluated separately and the step was kept if it 

passed all three criteria. The stance duration, average angle, and average torque of each step had to 

be between the 5 and 95 percentiles of the population of recorded steps. This procedure removed 

less than 30% of total steps (there were many steps that failed multiple criteria, which resulted in 

overall fewer steps removed). 

The angles and torques were low-pass filtered (20 Hz cutoff) and linearly interpolated to 

have the duration be equal to the average stance duration (0.72 ± 0.03 s). This was done with the 

MATLAB’s resample command, which uses a polyphase anti-aliasing filter besides performing the 

interpolation. The interpolation of this magnitude has been reported to affect less than 3% of the 

impedance estimation [25]. Next, the angular velocity, 𝑞̇𝑞, and angular acceleration, 𝑞̈𝑞, were 

calculated numerically with a central derivative approach. 
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The measured angles and torques have two components: a large curve from the gait activity 

and a smaller curve due to the external perturbation. The smaller component is the signal that should 

be used for the impedance estimation because it is the reactive component of the ankle torque. To 

extract the reactive components, the interpolated steps were averaged across step repetitions, 

resulting in the larger gait component (because the random small perturbations are averaged out). 

Next, from each step, the larger gait component is removed, resulting in only the reactive 

components. This same procedure was applied to the angular velocity and acceleration. 

Another round of outlier detection removed approximately 20% of the steps. In this 

detection criterion, the steps with angles or torques with any sample outside of the ± 3 standard 

deviation boundaries were removed (calculated across step repetitions). This resulted in 77.7 ± 10.3 

steps per axis of perturbation. Finally, the ankle impedance was calculated for each step on a 

moving window (100 ms long, 20 ms overlap). The stiffness, damping, and inertial parameters 

were calculated using a constrained least-square optimization method (MATLAB’s lsqnonneg 

function).  

𝑇𝑇𝐹𝐹[𝑡𝑡] ≜  𝐾𝐾𝐾𝐾[𝑡𝑡] + 𝐵𝐵𝑞̇𝑞[𝑡𝑡] + 𝐽𝐽𝑞̈𝑞[𝑡𝑡] (5.2) 

This procedure resulted in a time-varying impedance curve for each step. These results 

were averaged across step repetitions, without including time sections that are prior to or 125 ms 

after the perturbations (to remove signals with low signal to noise ratio). This averaged impedance 

was low-pass filtered (20 Hz cutoff) because it has been reported that 98% of the power of the 

ground reaction forces during gait is below 10 Hz and 99% is below 15 Hz [67]. 

5.5 Results and Discussion 

The average of the stiffness and damping were calculated across the four subjects and presented in 

polar plots with ± 1 standard deviation. Each parameter was shown in eight polar plots, representing 

increasing moments of the stance phase. The inertia was not presented because it included the 

effects of the foot and force plate inertia combined. 

 In general, the ankle stiffness and damping parameters are low at heel-strike, then they 

increase towards mid-stance, and decrease towards push-off. The stiffness in IE was higher than in 

DP from the heel-strike to about 24% of the stance phase. This might help stabilize the gait from 
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rolling the ankle during the heel-strike. Over time, the DP stiffness increases (similarly to the results 

of Chapter 4) until about 50% of the stance phase. This increase in stiffness agrees with previous 

time-varying DP stiffness studies [24], [68]. 

Interestingly, the ankle stiffness during early stance was not symmetric as previously 

reported in experiments with an unloaded ankle [31], [59]. It showed the highest value along DE/PI, 

which are ankle rotations close to the axis of rotation of the subtalar joint. Similarly, the damping 

past the midstance phase was higher along this same axis. This shows that ankle impedance is not 

symmetrical to the anatomical axis, but mostly about the subtalar joint.  

In addition, the complex shape of the stiffness, especially in early stance (stance phase < 

24%), cannot be approximated with only two parameters as done in Chapter 2, in which 𝐾𝐾𝐷𝐷𝐷𝐷 and 

𝐾𝐾𝐼𝐼𝐼𝐼 parametrized the ankle stiffness. For example, the stiffness along the DI motion is not a 

combination of D and I motion; But rather, an independent value. Alternatively, the stiffness can 

be approximated by a Fourier series with high order, as demonstrated by Ho et al. [43]. Future work 

can implement this multi-directional impedance in a 2-DOF powered prosthesis, such as the 

prosthesis developed by Ficanha et al. [11]. 
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Figure 14. Average normalized time-varying ankle stiffness across the stance phase. The stiffness 

is normalized by the subjects’ masses. The square markers, solid line, and dotted lines represent 

the measured stiffness, smoothed average, and smoothed ± standard deviation, respectively. 
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Figure 15. Average normalized time-varying ankle damping. The damping is normalized by the 

subjects’ mass. The square markers, solid line, and dotted lines represent the measured damping, 

smoothed average, and smoothed ± standard deviation. 
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6 Design of a Vision Device to Assist Impedance 
Modulation of Ankle-Foot Prostheses 

6.1 Motivation 

In view of the effects of gait phase on the ankle impedance, a prosthesis control must be aware of 

the user’s state. This chapter reports the design of a device with environment-sensing capabilities, 

named Vision Device for Gait Assistance (VDGA). The hardware and software components are 

described, and in the final sections, a calibration was performed to estimate the dimensional 

characteristics that are used in further chapters. 

6.2 Hardware 

The VDGA is composed of a mobile computer (Hardkernel ODROID-XU4), a supervisor computer 

(Laptop with Ubuntu 16.04 operational system), a depth camera (PMDTec CamBoard pico flex), a 

microcontroller (WeMos Lollin32/ESP32), an IMU (Adafruit BNO055), a force-sensitive resistor 

circuit (Interlink 402 and 5 kΩ), a battery (Lithium-Polymer 5200 mAh, 60C 11.1V), and a voltage 

regulator (uxcell 12V to 5V, 50W). The subject wears the device, with all the instrumentation, 

while the state and measurements of the device can be visualized on the supervisor computer. The 

device has two modules: a light-weight shank shell (0.13 kg), holding all the sensors; and the waist 

pack, holding the mobile computer and battery circuit (0.78 kg, in which 0.40 kg is the battery). 

Note that the mobile computer does not have a monitor or keyboard to allow mobility to the VDGA 

user; thus, requiring the remote supervisor computer to supervise and control the device. 
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Figure 16. Components of the vision device used for gait assistance. 

The shank shell must provide a stable attachment between the subject’s shank and the 

sensors (camera and IMU) so that the measurements are consistent across time. The shank shell 

holds the depth camera via a camera adaptor with an adjustable pitch angle that can change the 

view angle of the device. Because the orientation of the camera relative to the shank shell can 

change, the IMU was directly attached to the body of the camera, rather than on the shank shell. 

The microcontroller was also attached on the shank shell, rather than on the waist pack, to reduce 

the length of the wires that communicate to the IMU and the force-sensitive resistor (FSR). This 

was preferred because the analog and I2C communication are more vulnerable to environmental 

noise than the USB interface. Cable clips reduce the cable tension on the USB connectors and the 

wire tension on the microcontroller pins. The microcontroller is connected to the IMU (via four 28 

AWG wires), to the FSR (via two 22 AWG wires), and to a 50 kΩ resistor, directly soldered to the 

board. The FSR is attached on the top surface of the shoe insole, around the heel region, within two 

layers of athletic tape (Hampton Adams, cotton-based). 

 



www.manaraa.com

40 

 
(a) 

 
(b) 

 
(c) 

Figure 17. (a) Visual Device for Gait Assistance. (b) Waist pack and (c) shank shell. 

The waist pack holds the onboard computer, the battery, the voltage regulator, and a battery 

voltage checkers (to prevent harm to subject or device due to battery under-voltage). The two USB 

cables loop around the cable clips on the shank shell, then are taped to the leg, circle around the 

cable clips on the waist pack, then connect to the onboard computer. The use of cable clips and 

cable tapes to the subject’s leg prevent damaging the connectors and reduce the discomfort of loose 

cables, which can substantially impact the normality of the gait during experiments. Finally, the 

onboard computer was stitched on the outside of the waist pack, rather than stored inside of it, to 

improve airflow and minimize overheating. 
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Figure 18. FSR circuit to detect the stance phase. When the FSR is under mechanical load, the 

electrical resistance decreases, and the ADC detects a voltage increase. 

The FSR and the 50 kΩ resistors are connected in series to form a voltage divider circuit, 

allowing the microcontroller to measure the change in resistance of the FSR in the form of voltage 

change (Figure 18). The common terminal of the resistors (middle tap) is connected to the analog 

to digital converter (ADC) of the microcontroller with 12 bits of resolution, while the other FSR 

terminal connects to the positive microcontroller reference (3.3 V) and the additional resistor 

connects to the negative reference (0 V). When the FSR is under mechanical pressure, which occurs 

when the VDGA wearer has the foot heel loaded, the FSR resistance drops from the nominal 1 MΩ, 

and the microcontroller’s ADC senses a rise on the middle tap voltage. 

6.3 Software Architecture 

The onboard computer was configured as a Wi-Fi (802.11ac) hotspot to share sensor measurements 

and remote access to the clients on the network (the supervisor computer) from a radius of more 

than 10 meters. Because the onboard computer does not have a monitor or an input device, the 

supervisor computer must manage the VDGA (e.g., starting programs, displaying the device status 

and measurements, turn-off device). The onboard computer, the supervisor computer, and the 

microcontroller are all integrated into the same software platform called Robotic Operational 

System (ROS). 

ROS is a growing platform used in robotics because it facilitates development and 

integration of software. ROS provides an infrastructure for multiple programs (ROS nodes), 

executing in real-time, and possibly on different computers to exchange information such as sensor 

measurements (ROS messages), device statuses, and action requests.  Because it standardizes the 

communication between programs, the software library developed by a third party (ROS packages) 

can be easily reused into a new system. Consequently, it aggregates a large community of 

developers focused on integration and documentation of their work. The main reasons the VDGA 

software was developed on ROS was to 1) Synchronize the measurements from the camera, IMU, 
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and force pressure sensors; 2) Transfer IMU and force pressure data from the microcontroller to 

the mobile computer; 3) Visualize the sensor data and status in real-time on the supervisor 

computer; 4) Use image processing and point cloud libraries developed by a third party; 5) Store 

sensor measurements for post-processing on another platform; and 6) Facilitate the development 

of future work of the VDGA by other researchers. 

The graph of the programs and information on the VDGA system (mobile and supervisor 

computers) are shown in Figure 19, where the ROS nodes are represented as ellipses, the ROS 

messages are the boxes, and the flow of information is represented by the arrows. The mobile 

computer executes the nodes: /camera_driver, /plane_estimator, /serial_arduino, and /logger. The 

node /camera_driver communicates with the depth camera using the Royale Software Development 

Kit (SDK) and ROS driver provided by the manufacturer [69]. It publishes the depth images, /depth, 

the intrinsic calibration of the camera, /cam_info, and the infrared intensity images, /intensity. The 

node /serial_arduino emulates the communication of the microcontroller to the entire ROS network 

as if it were a ROS-enabled computer. The /serial_arduino node and the program executing on the 

microcontroller collaborate to synchronize and publish the IMU measurements, /imu, and the 

voltage across the FSR, /heel_pressure. The messages /imu, /depth, and /cam_info are used by the 

node /plane_estimator to fit the ground profile to a plane model, /plane. For post-processing, the 

node /logger records the messages /plane, /depth, /cam_info, /intensity, /imu, /heel_pressure, and 

/plane. On the supervisor computer, the nodes /rviz and /plot display the intensity image and the 

/heel_pressure, respectively.  
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Figure 19. Graph of the processes executing on the VDGA system. Ellipses are ROS nodes, boxes 

are ROS messages, and the arrows point to the subscriber to the messages. 

The microcontroller publishes the IMU and FSR measurements to the mobile computer via 

serial communication (UART, 500000 Baud rate). The interface to the IMU uses the Adafruit 

BNO055 library [70] and physically via the I2C serial protocol (400 kHz clock), providing a data 

rate of 100 Hz. The heel force is measured at the same rate, synchronized with the IMU. 

6.4 Extrinsic Calibration between the Camera and the IMU 

Figure 20 shows the VDGA shank shell with the depth camera, the IMU sensor, a visual landmark, 

and the inertial frame from which the IMU is oriented (in which X, Y, and Z axes point to east, 

north, and up, respectively). To represent environmental measurements independent of the VDGA 

orientation, the visual measurements must be converted from the camera to the inertial frame, 

assisted by the IMU. In addition, there is an unaccounted-for time delay between the IMU and the 

camera samples that arise from an accumulation of time delays (from processing time, filtering 

delay, systematic time-stamping error). This time delay must be known in order to be compensated 

for. 
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Figure 20. Coordinate frame definitions of the VDGA. A visual landmark, {L}, is observed by 

the camera, in the camera frame {C}. Variables represented in this frame must be converted to 

the inertial frame, {I}, via the IMU sensor orientation. 

A spatial vector represented in the camera frame, 𝒔𝒔{𝐶𝐶} ∈ ℝ3, is converted to the inertial 

frame, 𝒔𝒔{𝐼𝐼} ∈ ℝ3, via the coordinate transformation 

�
0
𝒔𝒔{𝐼𝐼} � = 𝑞𝑞�𝐶𝐶⨂ �

0
𝒔𝒔{𝐶𝐶} �⨂𝑞𝑞𝐶𝐶   

(7.1) 

𝑞𝑞𝐶𝐶 = 𝑞𝑞𝑆𝑆⨂𝑞𝑞�𝐶𝐶𝐶𝐶 (7.2) 

where 𝑞𝑞𝐶𝐶 ∈ 𝑆𝑆𝑆𝑆(3), 𝑞𝑞𝑆𝑆 ∈ 𝑆𝑆𝑆𝑆(3), 𝑞𝑞𝐶𝐶𝐶𝐶 ∈ 𝑆𝑆𝑆𝑆(3) are the unit quaternions representing the rotation of 

the camera, the IMU sensor, and the IMU sensor relative to the camera, respectively. The operators 

⨂ and 𝑞𝑞� are the quaternion multiplication and conjugate, respectively. The IMU sensor used in this 

device has an embedded microcontroller that estimates the absolute orientation of the sensor and 
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compensates for the bias noise of the measurements [71]. Therefore, 𝑞𝑞𝑆𝑆 is known but 𝑞𝑞�𝐶𝐶𝐶𝐶 must be 

estimated via an extrinsic calibration procedure. 

  There are many extrinsic calibration approaches [72], [73] reported in the field, however, 

because the IMU BNO055 provides the sensor orientation directly and the noise biases are not 

easily quantifiable (due to the bias noise compensation performed by the embedded 

microcontroller), an ad hoc solution was preferred. This solution is similar to standard approaches, 

in which it also uses a visual landmark to estimate the camera motion, resulting in the relative 

orientation between devices and the time delay between visual and inertia measurements. Different 

from standard approaches, this solution also uses the IMU orientation together with the angular 

velocity and linear acceleration. 

6.4.1 Calibration Procedure 

As shown in Figure 21, the VDGA was moved across space, exciting all three axes (Figure 21.a), 

while the depth camera focused on a visual landmark (a checkerboard, 5×6 internal grids, grid 

length of 30 mm, Figure 21.b). The intensity images, camera intrinsics, and the IMU measurements 

were recorded for post-processing on a MATLAB script. The pose of the camera with respect to 

the landmark was estimated (function detectCheckerboardPoints), given the undistorted intensity 

images, camera intrinsic properties, and checkerboard dimensions.  

 

(a) 

 

(b) 

Figure 21. Intrinsic calibration setup. (a) Position and orientation of the camera with respect to 

the (b) visual landmark (checkerboard). 
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The calibration procedure involves predicting the IMU orientation 𝑞𝑞𝑆𝑆, body angular 

velocity, 𝝎𝝎{𝑆𝑆} , and linear body acceleration (with the static acceleration artifact from the gravity), 

𝒂𝒂{𝑆𝑆}
𝑆𝑆, given the camera motion and the unknown extrinsic parameters. These variables are 

calculated as 

𝑞𝑞𝑆𝑆(𝑡𝑡) = 𝑞𝑞𝐼𝐼𝐼𝐼⨂𝑞𝑞𝐿𝐿𝐿𝐿(𝑡𝑡 + 𝑡𝑡𝑑𝑑)⨂𝑞𝑞𝐶𝐶𝐶𝐶 (7.3) 

�
0
𝝎𝝎{𝑆𝑆} (𝑡𝑡)� = 𝑞𝑞𝐶𝐶𝐶𝐶⨂ �

0
𝝎𝝎{𝐶𝐶} (𝑡𝑡 + 𝑡𝑡𝑑𝑑)�⨂𝑞𝑞�𝐶𝐶𝐶𝐶 

(7.4) 

𝒂𝒂𝑆𝑆(𝑡𝑡) = 𝒂𝒂𝐶𝐶(𝑡𝑡 + 𝑡𝑡𝑑𝑑) + 𝝎̇𝝎{𝐶𝐶} (𝑡𝑡 + 𝑡𝑡𝑑𝑑) × 𝒓𝒓𝐶𝐶𝐶𝐶 + 𝝎𝝎{𝐶𝐶} (𝑡𝑡 + 𝑡𝑡𝑑𝑑) × � 𝝎𝝎{𝐶𝐶} (𝑡𝑡 + 𝑡𝑡𝑑𝑑) × 𝒓𝒓𝐶𝐶𝐶𝐶� − 𝒈𝒈 (7.5) 

where 𝑞𝑞𝐼𝐼𝐼𝐼 is the rotation from the inertial to the landmark frame; 

𝑞𝑞𝐿𝐿𝐿𝐿(𝑡𝑡) is the rotation from the landmark to the camera frame; 

𝑞𝑞𝐶𝐶𝐶𝐶 is the rotation from the camera to the IMU frame; 

𝝎𝝎{𝐶𝐶} (𝑡𝑡) is the body angular velocity represented in the camera frame; 

𝒂𝒂𝐶𝐶(𝑡𝑡) is the linear acceleration of the camera; 

𝒓𝒓𝐶𝐶𝐶𝐶 is the position vector from the camera to the IMU, in the camera frame; 

𝒈𝒈 is the gravity vector, in the inertial frame; 

𝑡𝑡𝑑𝑑 is the unaccounted-for time delay between the IMU and camera samples. 

For simplicity, the quaternion operations on Equation 7.5 were suppressed. But as a note, 𝒂𝒂𝐶𝐶(𝑡𝑡) 

and 𝒈𝒈 are converted from the landmark and inertia frames, respectively, to the IMU frame. The 

other components of the equation are converted from the camera to the IMU frame.  

The unknown parameters 𝑞𝑞𝐼𝐼𝐼𝐼, 𝑞𝑞𝐶𝐶𝐶𝐶, 𝑟𝑟𝐶𝐶𝐶𝐶, and 𝑡𝑡𝑑𝑑 were estimated by minimizing the residual 

of Equations 7.3, 7.4, and 7.5, with weighting factors of 0.2, 5.0, and 10.0, respectively. The 

weighting factors makes the units of angle, angular velocity (rad/s), and linear acceleration (m/s2) 

numerically similar amongst each other. The residuals of Equations 7.4-7.5 were computed as mean 
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squared errors, while the residual of Equation 7.3 was the mean absolute angle between the 

calculated and measure quaternions. The camera pose was upsampled to the rate of the IMU, at 100 

Hz; its time-derivatives were calculated with a Sarvitzky-Golay filter [51] (with a 3rd order 

polynomial on 21 points), and its time-shifts were calculated with spline interpolation. Finally, the 

problem was minimized with MATLAB’s fmincon function (interior-point algorithm [52]) with 

multiple starting points (MATLAB’s MultiStart algorithm) because this problem has shown to have 

multiple local minima. 

6.5 Results and Discussion 

The extrinsic calibration estimated the 𝑞𝑞𝐶𝐶𝐶𝐶 = [−0.0123, 0.9997, 0.0213, 0.0016] (x, y, z, w 

components, respectively) and 𝑡𝑡1 = 34.9 𝑚𝑚𝑚𝑚 (the reconstruction of all the IMU measurements are 

shown in Figure 22). The 𝑞𝑞𝐶𝐶𝐶𝐶 parameter converged to an expected value, agreeing with the sensor 

axes described by the manufacturer (the IMU and camera orientation is depicted in Figure 20). The 

mean absolute error of the IMU orientation was 0.66 degrees.  

 
(a) 

 
(b) 

Figure 22. IMU orientation, linear acceleration, and angular velocity during the extrinsic 

calibration experiment. The IMU measurements are represented in black lines, while the colored, 
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thicker, lines are the IMU predictions based on the extrinsic model and camera motion. The 

bottom left plot shows the quaternion error between prediction and measurements. 

The parameter 𝑞𝑞𝐼𝐼𝐼𝐼 was evaluated to equal [0.8339,−0.5520, 0.012, 0.0003]𝑇𝑇, which agrees 

with the orientation of the checkerboard, and the 𝑟𝑟𝐶𝐶𝐶𝐶 parameter did not converge to an expected 

value. The estimation of 𝑟𝑟𝐶𝐶𝐶𝐶 possibly could be improved with a higher IMU angular acceleration 

during the calibration procedure. However, the 𝑟𝑟𝐶𝐶𝐶𝐶 is not relevant in the next analyses because it is 

not used to convert landmarks from the camera to the inertial frame; therefore, it is not necessary 

to estimate it accurately. 
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7 Heel Strike Prediction for a Prosthetic Device using 
Depth Vision 

7.1 Motivation 

This chapter reports a preliminary evaluation of the VDGA sensing accuracy. The capabilities to 

1) sense the environment by estimating the ground inclination and 2) to predict the user intent by 

estimating the gait phase are described in Section 7.2 and evaluated in Section 7.3.  

7.2 Methods 

7.2.1 Environment Characterization 

The VDGA characterizes the environment as a plane, representing the ground, whose parameters 

are represented with respect to the inertial frame. The plane parameters with respect to the camera 

frame are first estimated with the depth camera, then converted to the inertial frame with the 

estimated IMU orientation.  

 
 

(a) (b) 

Figure 23. Measurements from the VDGA during walking, showing the ground and a section of 

the subject’s shoe. Depth camera (a) intensity and (b) IMU orientation represented as a unit 

quaternion. 
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The depth camera also captures objects above the ground, including a section of the 

subject’s foot (Figure 23.a) and possible obstacles on the ground. These objects must be recognized 

as outliers so the algorithm can characterize the ground plane without bias errors. This is achieved 

with the Random Sample Consensus (RANSAC) algorithm, which searches for a set of inlier points 

that best explain the identified model [74]. This algorithm is implemented with the Point Cloud 

Library [75], involving the following steps: A) the point cloud is downsampled into a voxel grid 

with a resolution of 30 mm (Figure 24.b), which decreases the execution time of the process; B) 

discard points more than one meter in front of the camera to avoid estimating planes from points 

that are far away from the subject (which can happen during final swing, when the camera pitch 

angle is high); C) calculate the normal vector of each neighboring (100 mm radius) set of 

downsampled points; D) apply the RANSAC algorithm on the downsampled points and normal 

vectors to fit a plane in which the inlier points have similar normal vectors and lie within 50 mm 

of the plane.  

 
   

(a) (b) (c) 

Figure 24. Point cloud processing pipeline. Convert depth image (a) into point cloud (b), 

downsample cloud into a voxel grid, and estimate plane from points close to plane and with low 

angular deviation (c). {C}, {S}, and {I} are the coordinate frames fixed on the camera, IMU 

sensor, and inertial frame, respectively. The X, Y, and Z axes are shown in red, green, and blue 

colors, respectively. 

The resulting plane model from the RANSAC algorithm is represented by a mathematical 

model (Equation 7.1) in which the origin is the optical center of the camera and the X, Y, and Z 
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axes point upwards, to the right, and forward from the image perspective, respectively (Figure 

24.a). 

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0 (7.1) 

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 are the coefficients of the plane model. However, a more useful representation 

of the plane is through the normal vector to the plane (𝒏𝒏�, Equation 7.2) and the plane distance to 

the camera (𝑝𝑝, Equation 7.3), calculated as follows 

𝒏𝒏� = [𝑎𝑎 𝑏𝑏 𝑐𝑐]𝑇𝑇/�𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 (7.2) 

𝑝𝑝 = 𝑑𝑑/�𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 (7.3) 

7.2.2 Gait Cycle Estimation 

As shown in previous sections, the mechanical impedance varies across the gait phase due to a 

combination of reasons (muscle contraction, ankle angle, and ankle torque, among others). Thus, it 

is essential for a powered prosthesis to accurately track the gait phase so the prosthesis can modulate 

the impedance accordingly. In this section, the gait phase was estimated using two approaches: a 

standard approach using measurements from the IMU data, and a second using measurements from 

both IMU and depth camera. 

 The response variable was labeled using the FSR measurements. Suppose the gait phase, 

𝜑𝜑[𝑡𝑡] 𝜖𝜖 ℝ | 0 ≤ 𝜑𝜑 < 1, is defined as 0 on the moment of heel strike and continually increases to 1 

at the heel strike of the next step. For any time, 𝑡𝑡𝑖𝑖, that the heel strike occurred, the FSR reading 

increased to above 2.1 V and 𝜑𝜑[𝑡𝑡𝑖𝑖] was labeled as 0. The consecutive heel strikes were linearly 

interpolated according to time, that is, 𝜑𝜑[𝑡𝑡𝑖𝑖 + 𝑡𝑡] = 𝑡𝑡/(𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖) for 0 ≤ 𝑡𝑡 < 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖. In addition, 

to avoid the discontinuity between heel-strikes (from 1 to 0, which hindered the regression 

performance), the gait phase variable was transformed into a phasor form, 𝕐𝕐, with two response 

variables: 

𝕐𝕐[𝑡𝑡] = [cos 2𝜋𝜋𝜋𝜋[𝑡𝑡] sin 2𝜋𝜋𝜋𝜋[𝑡𝑡]]𝑇𝑇 (7.4) 
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 For the predictor variables, two approaches were tested to evaluate the benefit of using the 

camera depth information. The predictor variable of the first approach, 𝕏𝕏𝑎𝑎, used the instantaneous 

measurements from the IMU (angular velocity and linear acceleration): 

𝕏𝕏𝑎𝑎[𝑡𝑡] = [𝝎𝝎𝑆𝑆
𝑇𝑇[𝑡𝑡] 𝒔𝒔𝑆𝑆𝑇𝑇[𝑡𝑡]]𝑇𝑇 (7.5) 

While the predictor variable of the second approach, 𝕏𝕏𝑏𝑏, also used the instantaneous 

measurement of the IMU and, in addition, the time-interpolated ground estimates: the estimated 

normal vector of the ground (in the camera frame) and the camera distance to the ground. 

𝕏𝕏𝑏𝑏[𝑡𝑡] = [𝝎𝝎𝑆𝑆
𝑇𝑇[𝑡𝑡] 𝒔𝒔𝑆𝑆𝑇𝑇[𝑡𝑡] 𝒏𝒏�𝑇𝑇[𝑡𝑡] 𝑝𝑝[𝑡𝑡]]𝑇𝑇 (7.6) 

 Each phasor component of the response variable was fit individually using a Least Square 

regression. Sixty percent of the samples were selected randomly for using on the training and the 

remaining 30% were used for testing, to evaluate the prediction. Finally, to predict the gait phase, 

the phasor variables were unpacked as 

𝜑𝜑�[𝑡𝑡] = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝕐𝕐�2[𝑡𝑡],𝕐𝕐�1[𝑡𝑡])/2𝜋𝜋 (7.7) 

where �  represents the estimated variable by the regression model and atan2 is the arctangent 

function, returning an angle in the range [0, 2𝜋𝜋).  Errors above 50% or below -50% of the gait 

phase were added values of -100% and 100%, respectively, because the gait phase is a cyclic 

variable. For example, a gait phase error of 99% (above 50%) is equivalent to -1% (99% - 100% = 

-1%). 

7.3 Experimental Procedure 

As a preliminary evaluation, three able-bodied subjects, including 2 males and 1 female, 

participated in a walking experiment in which their gait phase was predicted, and the environment 

was characterized.  The subjects were able-bodied with no self-reported history of biomechanical 

or neuromuscular disorders. The walking course was an indoor level-ground hallway with 225 ft in 

length (Figure 25). The subject walked along the perimeter of the hallway (at least 3 feet away from 

the walls) with a self-selected speed in clock-wise (CW) direction, then complete another lap in the 

opposite direction, in counter-clock-wise (CCW) direction, totaling approximately 450 ft of 



www.manaraa.com

53 

walking. The design of the track had 18 right-turns and 18 left-turns, and about resulted in 

approximately 100 steps in total. The subject was asked to change their gait speed throughout the 

course, but never stop walking, resulting in gait periods of 1.02 ± 0.11 cycles/s. In addition, the 

subject initially completed an extra lap so they would get used to the device, and the data from this 

lap was discarded. 

 
Figure 25. Walking course used for the evaluation of the VDGA. Subjects followed the perimeter 

of the hallway at a self-selected speed. The green flag indicates the start and end position.  

The USB cables were attached to the outside of the upper shank and on the waist pack belt 

before connecting them to the onboard computer. This improved the mobility of the subject so that 

they could walk without interference from the cabling. The shank shell was taped to the shank 

behind the ankle (Figure 17.a) and on the upper shank (Figure 17.b) to avoid displacing the device 

during or between the experiments. The center of the FSR was placed approximately 30 mm from 

the posterior end of the shoe insole, centered along the mid-lateral direction. The subject wore their 

own personal, comfortable, shoes and socks. 

7.4 Results and Discussion 

The voltage measured on the FSR circuit ranged from 0 V, when the FSR was unloaded, 

to approximately 3.2 V, when the FSR was under the subject’s weight (Figure 26). For all subjects, 

the heel-strike event was detected when the voltage increased to above 2.0 V.  
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The voltage of the FSR stayed at 0 V during the later moments of the stance (40% to 60%). 

This happened because the foot heel lost contact to the FSR, possibly because the shoe was unable 

to conform to the foot when the foot segments were deforming. However, during the swing phase, 

when the foot segments return to a neutral angle, the FSR restored the contact with the heel and 

increased the voltage. The drop of voltage was not used to label the gait phase because it depended 

on the flexibility of the subjects’ shoes. 

 
Figure 26. Voltage on the FSR circuit across the gait cycle for the subject I. The voltage was 

interpolated so that the heel strike happens at 0% and 100% marks. 

 The IMU measurements from multiple steps are shown in Figure 27 interpolated across the 

gait cycle. The small variance of the IMU readings indicates the FSR was able to segment the stance 

phase accurately. As expected, the IMU detected high accelerations close to the heel-strike and 

push-off events, and high angular acceleration along the sagittal plane (Y-axis) during the swing 

phase. 
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(a) 

 
(b) 

Figure 27. IMU measurements across the gait cycle for subject I. The (a) angular velocity and (b) 

linear acceleration from the X, Y, and Z measurements, interpolated from multiple steps. 

7.4.1 Characterization of the Environment  

The normal vector of the ground predicted from the camera frame of a representative subject is 

shown in Figure 28. The normal vector was represented in the inertial frame; thus, it has a nominal 

value of [0, 0, 1]𝑇𝑇 (z-axis points up). Ideally, the normal vector estimate should not change across 

the gait phase or between different steps. The estimation was relatively accurate, except during the 

heel strike and push-off (gait phases of 0 and 60%, respectively), in which the standard deviations 

of the plane model inclination along the x and y axes were about 4 degrees. The ground impact 

during heel strike greatly accelerates the camera, aggravating the effects on the plane estimation 

due to the camera rolling shutter (image pixels are not sampled at the same time) and 

synchronization errors between the IMU and the camera. The push-off gait event also showed 

relatively high ground reconstruction errors (standard deviation of errors around 3.5°). During the 

push-off, the camera’s view was approximately perpendicular and at its closest distance to the 

ground, which reduced the ground area captured by the camera. With less ground area, but with the 
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same amount of random noise (lower signal to noise ratio), the algorithm produced more errors 

estimating the plane model. 

 
Figure 28. Normal vector estimates of the ground plane represented across the gait cycle. Each 

normal plane estimate, represented in the inertial frame, is shown on the top graph. The angle 

between each normal vector estimate and the average normal vector is considered as the 

estimation error, and is presented in the bottom graph. 

The average ground inclination, represented in the inertial frame, was calculated for each 

trial (Table 4). Interestingly, there was a substantial non-zero ground inclination in every trial of 

about 3 degrees. However, this does not mean there was a real ground inclination in the walking 

course because each trial showed a different inclination estimate rather than the same. Also, an 

inclination of this magnitude would be noticeable (as a reference, the Pisa tower in Italy leaned 

about 4 degrees in 2013, and has leaned up to 10 degrees prior [76]). Thus, this error component 

likely arose from a bias noise from the IMU orientation, which uses a magnetometer and linear 

acceleration sensing. The standard deviation of the inclination was relatively similar for subjects 

and trials; and is likely due to 1) random measurement noise from the IMU and the camera, 2) small 

errors in the extrinsic calibration, and 3) small time-synchronization errors.  
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Table 4. Environmental ground inclination for each experimental trial. The inclination error was 

calculated along the X and Y axes of the inertial frame. 

Subject Walking Track Ground Inclination 
x-axis [°] y-axis [°] 

I CW 0.67 ± 3.28 -0.84 ± 2.54 
CCW 2.14 ± 3.00 -0.17 ± 2.67 

II CW -2.20 ± 2.44 2.09 ± 2.34 
CCW -0.22 ± 2.41 -0.95 ± 2.29 

III CW -1.95 ± 2.78 0.20 ± 2.81 
CCW 0.95 ± 2.55 -2.93 ± 2.33 

The ground was characterized using instantaneous measurements of the IMU orientation 

and of the image depth. This analysis focused on evaluating the accuracy of the measurements and 

of the extrinsic calibration. However, a batch processing of many past measurements could result 

in an increased ground characterization. Such processing could use Simultaneous Localization and 

Mapping (SLAM) algorithms to estimate both the camera pose and the environment structure [77]. 

More recent SLAM algorithms also use depth and inertial measurements [78], [79] to increase the 

tracking stability of the camera pose and to capture the environment with more details. In addition, 

this system could improve stability and environment detection using prior knowledge of gait events 

measured by the FSR, similar to a dead-reckoning system for pedestrians [80]. This preliminary 

study shows promising results that indicate that the VDGA can be used for both gait prediction and 

environment characterization. 

7.4.2 Estimation of the Gait Cycle  

The histogram of the gait phase prediction errors for approach a (IMU as predictor) and b (IMU 

and depth as predictors) were calculated using the test samples (Figure 29). The gait phase 

prediction errors were 1.6 ± 15.6% and 0.2 ± 7.6% for approach a and b, respectively. In other 

words, 49.9% and 90.8% of the predictions were within [10%, 10%] of the correct value, for 

approach a and b, respectively. For completeness, another set of features (angular velocity, linear 

acceleration, and orientation quaternion) was tested and also showed high prediction errors of 1.4 

± 15.6%, similar to approach a. 
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Figure 29. Histogram of the prediction error of the gait phase estimator. The approach using IMU 

and depth information have smaller errors compared to the IMU-only approach. 

The visual information used on the second approach complemented the IMU measurements 

with the shank height and the shank orientation with respect to the ground. The IMU cannot 

estimate a linear positional variable directly (the double integration of linear acceleration would be 

imprecise), thus, an exteroceptive sensor such as the depth camera can add important information. 

In addition, it is likely the ground inclination could have a more substantial role for predicting the 

gait phase if the experiments were performed in more challenging ground environments, with 

slopes and steps, since similar phase predictors that use the thigh angular position and velocity must 

be compensated for the ground incline [81]. This preliminary study shows that the visual 

information can improve the prediction of the gait phase, and that combined with the estimates of 

the ground environment, might improve the operation of ankle-foot prosthesis in complex ground 

environments. 
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8 Conclusion 

In this work, the mechanical impedance of the human ankle was studied to improve the control of 

robotic ankle-foot prostheses. The mechanical impedance was shown to increase as a response to 

co-contractions of the calf muscles. The ankle stiffness around the DP anatomical axis was shown 

to increase up to four times when the calf muscles were at 40% of the MVC. The value of the ankle 

stiffness was also shown to depend on the mean angle and torque of a standing person, and to the 

direction of ankle rotation. As a consequence, a gait maneuver, which has varying levels of calf 

muscle activity, ankle angle, and torques, should present a varying impedance. To test this 

hypothesis, the multivariable and time-varying impedance of the ankle was estimated across the 

stance phase. Interestingly, the estimated stiffness and damping was approximately symmetric 

around the subtalar joint of the ankle, rather than around an anatomical axis. 

The findings from the mechanical impedance experiments indicated the importance for 

robotic prostheses to recognize the state of the prosthesis user during the gait, as the user interacts 

with the environment. To further the work on robotic perception for ankle-foot prostheses, a 

wearable device called VDGA was designed and evaluated. This device is capable of characterizing 

the ground environment and estimating the gait state using a time-of-flight camera and an inertial 

measurement unit sensor. Preliminary tests estimated the level-ground environment with 

inclination errors of approximately three degrees, and predicted the gait phase variable with errors 

around 0.2 ± 7.6% of the gait phase. These results showed that this device can capture accurate and 

relevant information for applications of robotic prostheses control. 

As future work, the ankle impedance will be studied for different gait maneuvers and in 

complex environmental conditions, such as during ramp or stairs ascend or descend. In parallel, the 

VDGA algorithm will be extended to predict more features of the environment, such as stairs and 

ramps, and will be used to estimate the foothold of incoming steps. Finally, this work contributed 

to improve the prosthesis by identifying the mechanical behavior of the human ankle and by 

developing a platform to test perception algorithms for the control of robotic prostheses.  
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	Abstract

	With the growing population of amputees, powered prostheses can be a solution to improve the quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to the lost limb via controllers that emulate the mechanical impe...

	1 Introduction
	The incidence of amputations is a growing problem, currently affecting 2 million people in the United States, and is projected to affect approximately 3.6 million people in 2050 [1]. This steep increase is justified by the aging of the population arou...
	Currently, there are many transtibial powered prostheses available commercially [3]–[5]. BiOM can decrease the metabolic cost of the gait by applying an ankle torque during toe-off. It includes an embedded controller that adapts to the user cadence an...
	This compliance can be measured as mechanical impedance. The mechanical impedance defines how much reactive torque the ankle generates when an external disturbance changes the ankle angle. Some prostheses are capable of modulating the ankle impedance ...
	Early developments on ankle impedance estimation go back to the 1980s with Weiss, Kearney, and Hunter [18]–[20]. They estimated a 2nd order impedance of the ankle of subjects lying in the supine position, and noticed that the ankle position can cause...
	Studies of  the ankle impedance in the sagittal plane extended to functional activities, such as straight walking [22] and turning [23]. The early stance phase was studied by Rouse et al. using a vibrating platform, called Perturberator, that applies ...
	Even though the dorsi-plantar (DP) motion is the primary focus of most studies, there are substantial ankle motions in all other anatomical planes during walking, such as in inversion-eversion (IE) [27]–[30]. Thus, understanding the characteristics of...
	The anisotropic ankle impedance during walking was estimated with a two Degrees of Freedom (DOF) vibrating platform for the first time [23]. Step torque perturbations were applied along different moments of the gait cycle, at 16 different axes of rota...
	For powered prostheses to modulate a time-varying impedance or simply to follow a time-based trajectory, such as the ankle torques and angles across the gait cycle, they need to know the state of the user, such as the gait phase [33], [34]. In additio...
	An emerging approach is to use exteroceptive sensors, which can measure the environment features directly. This can assist prostheses in adapting the behavior based on the ground terrain, slope [45], and flatness [46]. A ranging laser and an inertial ...
	In this dissertation, the mechanical impedance of the human ankle was studied and related to multiple other factors. In Chapter 2, the instrumental apparatus used to quantify multi-directional ankle dynamics is presented and characterized. After the ...

	2 Modeling of the Instrumented Walkway
	2.1 Motivation
	The Instrumented Walkway is an experimental apparatus designed to study the dynamics of the human ankle as they change across gait maneuvers. As seen in Figure 1, it consists of a two degrees of freedom (DOF) vibrating platform, a force plate (Kistler...
	Figure 1. Instrumented Walkway. (a) During a walking experiment and (b) close view of the vibrating mechanism.
	The Instrumented Walkway was designed to identify the dynamics of the human ankle without being affected by the dynamics of the actuators, except for limiting the frequency bandwidth of the input signal. This was accomplished by assembling a FP on top...
	However, because the FP measures all the dynamics occurring above the force sensors, the inertial dynamics of the FP are still accounted for in the measurements. The inertial dynamics are substantial considering the large mass of the FP compared to th...

	2.2 Method
	The inertial dynamics of the FP can be compensated from the human trials in the following procedure:
	2.2.1 Model of the FP Dynamics
	A coordinate frame is defined in the center of the top surface of the FP, on point 𝑃 (Figure 2). The measured force and torque, ,𝐹-𝑃. and ,𝑇-𝑃., respectively, are defined in this coordinate frame.
	Assuming that nothing is in contact with the top surface of the FP and that the vibrating platform is moving the FP via an interface force and torque, the motion of the system can be modeled by the law of conservation of linear and angular momentum ar...
	Figure 2. Coordinate frame notation for the FP. Origin of the body lies in the center of the top surface, with x pointing towards the long body dimension and y towards the normal to the top surface. The measured force and torque, TP[t] and FP[t], act ...
	When the platform is vibrated during an unloaded scenario, only the weight and the contact forces and torques (measured) are external actors on the body. In this case, the equation of the linear motion can be derived from the linear momentum, 𝑝, as
	Similarly, the angular motion can be derived from the angular momentum about the moving point P, ,𝐿-𝑃.
	for ,𝐼-𝑃.=,,,𝐼-𝑃-𝑥𝑥.-,𝐼-𝑃-𝑥𝑦.-,𝐼-𝑃-𝑥𝑧.-,𝐼-𝑃-𝑥𝑦.-,𝐼-𝑃-𝑦𝑦.-,𝐼-𝑃-𝑦𝑧.-,𝐼-𝑃-𝑥𝑧.-,𝐼-𝑃-𝑦𝑧.-,𝐼-𝑃-𝑧𝑧...,
	where ,𝑚-𝑃., ,𝑟-𝑃., ,,𝐼-𝑃-𝑥𝑥.,,𝐼-𝑃-𝑦𝑦.,,𝐼-𝑃-𝑧𝑧.., and ,,𝐼-𝑃-𝑦𝑧.,,𝐼-𝑃-𝑥𝑧.,,𝐼-𝑃-𝑥𝑦.. are the inertial parameters of the FP: the mass, the center of mass (CoM) relative to the FP origin, the moment of inertia, and product of i...
	,𝜔-𝑃. is the body angular velocity of the FP;
	,,𝜔.-𝐹. is the body angular acceleration of the FP;
	,,𝑠.-𝐹. is the linear velocity of FP origin;
	,,𝑠.-𝐹. is the linear acceleration of the FP origin;
	,,𝑠.-𝑃0.=,,𝑠.-𝑃.+,𝜔-𝑃.×,𝑟-𝑃. is the linear velocity of the FP CoM;
	,,𝑠.-𝑃0.=,,𝑠.-𝑃.+,,𝜔.-𝑃.×,𝑟-𝑃.+,𝜔-𝑃.×(,𝜔-𝑃.×,𝑟-𝑃.)  is the linear acceleration of the FP CoM;
	𝑔=,,0, −9.81, 0.-𝑇. 𝑚/,𝑠-2. is the gravity acceleration vector.

	2.2.2 Experimental Estimation of the FP Inertial Parameters
	The unknown parameters from Eq. (2.3) and (2.) are estimated from a calibration experiment and later used to compensate the ground reaction forces and torques from the human experiments. In this experiment, the unloaded vibrating platform was actuated...
	where
	are the cost function (with implicit dependence to 𝜃) derived from the residual of Eq. (2.3) and (2.6), and the vector of unknown parameters, respectively. The operator ∗[𝑡] represents a measurement from time 𝑡.  ,𝑇-𝑏𝑖𝑎𝑠. and ,𝐹-𝑏𝑖𝑎𝑠. wer...
	Signal Processing. The time derivatives were numerically computed via Savitzky-Golay filter [51] (5th order polynomial in a 15-samples window) and the optimization solved with MATLAB’s fmincon function (interior-point algorithm [52]).


	2.3 Results and Discussion
	The FP inertia parameters were estimated as ,,35.0±1.9,  131.7±18.8,  119.6±2.5.-𝑇.𝑔.,𝑚-2., ,,0.1±1.2,  1,9±0.4,  0.4±1.2.-𝑇.𝑔.,𝑚-2., and ,,4.8±1.3,  −6.9±2.9,  2.3±1.3.-𝑇.𝑚𝑚 for the moment of inertia, the product of inertia, and the center o...
	Table 1. Estimates of the FP inertia parameters. Columns of each parameter represent X, Y, and Z components, respectively.
	The FP moment of inertia and product of inertia were similar to an ideal box of equivalent size and mass. This ideal box would have a moment of inertia of ,,34.8, 131.2, 97.0.-𝑇.𝑔.,𝑚-2. and 0.0 𝑔.,𝑚-2. product of inertia. The small estimated prod...
	Finally, for this application, the VAF of the reconstructed (predicted) forces and torques are more relevant than the confidence of the inertial parameters. This implies that, to predict and compensate for the effects of the FP dynamics on the human e...


	3 Mechanical Impedance of the Human Ankle over Levels of Muscle Co-Contraction
	3.1 Motivation
	The human ankle is a complex joint whose motion involves multiple bones, tendons, and muscles. For example, ankle rotations in the DP and IE directions require the synergistic work of twelve and five of the lower-leg muscles, respectively. Faced with ...
	Muscles contribute to the overall ankle motion, and with the activation of antagonistic muscles, it can also affect its mechanical impedance. Studies in this field have demonstrated that muscle contraction contributes to a significant increase in the ...

	3.2 Subjects
	Twelve able-bodied male subjects with no self-reported history of biomechanical or neuromuscular disorders were recruited (age of 27.9 ± 3.5 years, weight of 92.3 ± 27.6 kg, and height of 180.2 ± 6.7 cm). All participants gave written informed consent...

	3.3 Experimental Procedure
	The experiment consisted of ten 70-seconds trials in which random perturbations were applied to the right feet of the standing subjects (Figure 3). For the duration of each trial, the subjects stood with feet facing one out of two directions (forward ...
	Figure 3. Subject in standing pose while the vibrating platform applied ground perturbations. EMG sensors were placed on the TA, PL, SOL, and GA EMG muscles.
	To determine the MVC of a subject, prior to the experiment, the subjects contracted their lower-leg at their maximum levels in pulses of 1-second for 5 to 10 times. The MVC was defined as the maximum recorded voltage of the TA muscle and used as a ref...
	Measurements were taken from the foot, shank, and force plate kinematics, external torques and forces perturbations, all sampled at 350 Hz. Additionally, the muscle activity of the tibialis anterior (TA), peroneus longus (PL), soleus (SOL), and gastro...
	The random perturbation used in this experiment was random in both the magnitude and directions of rotation, changing its value every 0.03 seconds. The magnitude of the signal was in the form of pseudo-random binary sequences and the direction was uni...
	Figure 4. Ankle angle perturbation. Represented in the (a) time domain and (b) frequency domain.

	3.4 Standing Ankle Impedance Estimation
	The multivariable mechanical impedance of the ankle was estimated using the differential equations of motion of the lower leg that included the ankle impedance coefficients and the inertia of the foot. This method approximates the foot as a rigid body
	where
	,𝑚-𝐹. is the foot mass;
	,𝑟-𝐹. is the center of mass relative to the foot origin;
	,𝐼-𝐹.=,,,𝐼-𝐹-𝑥𝑥.-,𝐼-𝐹-𝑥𝑦.-,𝐼-𝐹-𝑥𝑧.-,𝐼-𝐹-𝑥𝑦.-,𝐼-𝐹-𝑦𝑦.-,𝐼-𝐹-𝑦𝑧.-,𝐼-𝐹-𝑥𝑧.-,𝐼-𝐹-𝑦𝑧.-,𝐼-𝐹-𝑧𝑧... is the inertia matrix of the foot relative to the CoM;
	,,𝐼-𝐹-𝑥𝑥.,,𝐼-𝐹-𝑦𝑦.,,𝐼-𝐹-𝑧𝑧.. are the moments of inertia of the foot, relative to the CoM;
	,,𝐼-𝐹-𝑦𝑧.,,𝐼-𝐹-𝑥𝑧.,,𝐼-𝐹-𝑥𝑦.. are the products of inertia of the foot, relative to the CoM;
	,𝜔-𝐹. is the body angular velocity of the foot;
	,,𝜔.-𝐹. is the body angular acceleration of the foot;
	,,𝑠.-𝐹. is the linear velocity of foot origin;
	,,𝑠.-𝐹. is the linear acceleration of the foot origin;
	,,𝑠.-𝐹0.=,,𝑠.-𝐹.+,𝜔-𝐹.×,𝑟-𝐹. is the linear velocity of the foot CoM and,
	,,𝑠.-𝐹0.=,,𝑠.-𝐹.+,,𝜔.-𝐹.×,𝑟-𝐹.+,𝜔-𝐹.×(,𝜔-𝐹.×,𝑟-𝐹.)   is the linear acceleration of the foot CoM.
	,𝑇-𝐹. is the external torque acting on the ankle, compensated by the FP inertia, calculated as
	where ,𝑇-𝑃., ,𝐹-𝑃., ,𝑇-𝑖𝑃., ,𝐹-𝑖𝑃., ,𝑠-𝑃., and ,𝑠-𝐹. are the external ground torque, the external ground force, inertial FP torque (2.3), inertia FP force (2.6), FP position, and foot position, respectively.
	The variable ,𝑇-𝑍.,𝜃, ,𝜃.. is the torque due to the mechanical ankle impedance. The ankle was modeled as a gimbal joint with springs and viscous dampers on each of the three consecutive rotating axes in the order XYZ: first a rotation in the shank...
	where ,𝐽-𝑋𝑌𝑍-−1.,𝜃. is the mapping between the body angular velocity and the Euler (XYZ) angle rates [60], which, conversely, maps a torque from Euler coordinates to foot coordinates.
	The time-derivatives were calculated with a Sarvitzky-Golay filter [51] with 11-samples window and a 5th order polynomial. In addition, the same filter was used to smooth all the other kinematic signals. This filter approximates the samples of a signa...
	The best-fit estimates for the unknown parameters were calculated with a non-linear optimization method, Sequential Quadratic Programming [52], by substituting the measurements and computed derivatives into Eq. 1, and reducing the mean-square-error of...
	for
	where ,𝑧-𝑖. is the set of biases and impedances of trial i.
	Considering the impedance and bias might change within a trial, each trial was split in 40 time-windows of 2-seconds of duration (25% overlap) and used to estimate an independent solution, x. Therefore, each subject had 40 estimates of foot inertia, a...
	Once the unknown parameters are estimated, the model can be evaluated measuring the mean absolute error (MAE) of the torque as
	where ,𝑻-𝐹-,𝑖..(𝒙) and ,𝑻-𝑟𝑒𝑓-[𝑖]. are the estimated and measured ground reaction torques around the ankle (,𝑇-𝐹. from Equation 3.3), for the  ,𝑖-𝑡ℎ. of N samples in a trial. The normalized mean square error (R2) is another measure of mod...

	3.5 Results and Discussion
	3.5.1 Evaluation of the Muscle Activity
	A summary of the normalized EMG signals during each co-contraction trial is presented in Figure 5. The RMS of the EMG signal across the trial is calculated for each subject and grouped with the respective co-contraction trial in a boxplot. Therefore, ...
	The median EMG activity increased linearly as intended on the experimental design, especially from the TA muscles. The TA was the only muscle directly supervised during the experiment, so it is expected to follow the linear pattern. However, the PL, G...
	Figure 5. Normalized muscle activity for each of the co-contraction trials. The percentiles of the box plots are computed across the RMS of the EMG signal for each subject.

	3.5.2 Mechanical Impedance of the Ankle during Co-Contraction
	The external torque was predicted using the estimated impedance parameters and resulted in a MAE torque of 2.1 ± 0.3 Nm (average and the standard deviation were calculated across all subjects and trials). The model R2 values were above 0.8 and 0.7 for...
	Figure 6. Mechanical ankle impedance in each of the co-contraction trials. The impedance was parameterized with a (a) stiffness, (b) damping, and (c) inertia coefficients, and evaluated with the (d) R2 of the response ankle torque.
	The DP stiffness component of the impedance significantly increased with the co-contraction level, while the median of the IE stiffness, DP and IE damping, and DP and IE inertia remained relatively constant (Table 2). All stiffness and damping paramet...
	Table 2. Linear regression of impedance as a function of muscle contraction. * represents coefficients significantly different than zero (t-test, significance p < 0.05)

	3.5.3 Pair-wise Correlation Between Impedance Parameter and Muscle Activation
	Possibly the large impedance variance amongst subjects and the not-significant impedance change (per % MVC), as shown in Figure 6, could have been caused by subjects failing to hold muscle activity levels consistently (Figure 5). Therefore, it might b...
	The linearity of these points was evaluated with an Analysis of Variance (ANOVA, p ≤ 0.05) for linear models. All the combinations of muscles and impedances were analyzed, totaling sixteen linear models per subject. Two subjects were removed from this...
	Table 3. Evaluation of linearity between muscle contraction and impedance parameter. Percentage of subjects who presented linear correlation between medians of EMG RMS and average impedance.
	The DP stiffness parameter showed the most frequency of linear correlations with other muscles (up to 40% for some muscles), while IE damping showed the least (0% for most muscles). Interestingly, DP damping and IE stiffness showed a high frequency of...



	4 Mechanical Impedance of the Human Ankle over Static Poses of the Gait Cycle
	4.1 Motivation
	The characterization of the mechanical impedance has been a rich field of research for many decades due to the complexity of the ankle joint complex. For example, the ankle has been shown to respond differently around different mean ankle angles and t...
	These studies have been extended to the ankle impedance in the standing position, which accounts for the complexity of body sway and forces loading on the ankle. Considerable body sway was found to increase the value of the stiffness, possibly as an a...

	4.2 Subjects
	Fifteen subjects with no self-reported neuromuscular or biomechanical disorders participated in this experiment (ages of 28.0 ± 4.4, mass of 79.0 ± 11.1 kg, and height of 178.0 ± 7.7 cm). The subjects gave written consent to participate in the experim...

	4.3 Experimental Procedure
	The Instrumented Walkway (Chapter 2) was used in this experiment. In addition, EMG sensors (Delsys Trigno wireless™, 2000 Hz sampling rate) were used to measure the lower extremity muscle activity. The sensors were placed on 5 muscles; including the T...
	This study analyzed fours stationary poses: Foot Flat (FF), Midstance (MS), Post Midstance (MS+), and Terminal Stance (TS), as shown in Figure 7. Each of these poses has a different combination of ankle angle and foot center of pressure (CoP) to emula...
	Figure 7. Stationary poses of the gait cycle. The poses emulate moments of the stance phase of the walk. The CoP increases along the anterior-posterior direction for the FF, MS, MS+, and TS poses, from left to right. The red dot indicates the CoP loca...
	To have consistency between repeated trials, the placement of the feet, the CoP’s anterior-posterior position (Equation 4.1), and the weight distribution were supervised. The right foot was placed on the force plate inside a drawn outline of the foot,...
	where ,𝑑-𝑃.ℎ𝑒𝑒𝑙. and ,𝐿-𝑓𝑜𝑜𝑡. are the foot length and distance from heel to the center of FP. ,𝑇-𝑃. and ,𝐹-𝑃. are the torque and force measurements by the force plate.
	The ground perturbations were in the form of pulse trains of random rotating axis (0-360º), period (0.03-0.2 s), and duration (0.9-1.1 s); and between consecutive pulse trains, the vibrating platform was inactive for a random pause time (0.9-1.1 s), a...
	Figure 8. Example of ground perturbation.

	4.4 Ankle Impedance Estimation
	The ankle impedance was modeled as a 2nd order system (with stiffness, damping, and inertia), acting in parallel to the foot inertia. In addition, the ankle impedance and foot inertia were estimated for multiple rotating axes. For each rotating axis, ...
	The external torque acting on the ankle was compensated for the force plate inertia, as described in Chapter 2. By subtracting this torque component from the calculated torque working on the subject ankle (Equation 4.2), the dynamic system can be redu...
	The ankle impedance reacts to changes in the ankle angle as a 2nd order model; In other words, it reacts with a torque proportional to a change in angle, velocity, and acceleration. The neutral position of the angle-proportional component (or stiffne...
	Figure 9. Coordinate frame notation for the foot. Foot origin is on the ankle center, with x pointing towards the long axis of the foot, parallel to the ground, and y pointing upwards. The orientation of the foot in respect to the shank is composed by...
	To calculate the ankle angles during the perturbation, the orientation between the shin and foot, represented as a rotation matrix, ,𝑅-𝐹.,𝑡.=,𝑅-𝑆.,𝑡.,𝑅-,𝑞-0..,𝑅-𝑞.[𝑡],  is decomposed into two transformations: the neutral position rotation m...
	The DP and IE ankle angles are defined as the Z and X rotations of the Euler angle (XYZ) representation of ,𝑅-𝑞.,𝑡.. The conversion between the rotation matrix to Euler angles is presented
	Finally, the ankle impedance was defined as a 2nd order model and estimated for every axis of rotation, 𝜙. For this estimation, the external torque, ankle angle, and foot kinematics must be converted to a coordinate frame aligned to the axis of rotat...
	Suppose all the variables were converted to the axis of rotation of the perturbation, the impedance is modeled as
	where 𝐾, 𝐵, and 𝐽 are the stiffness, damping, and inertia, respectively. ,,𝜔.-𝐹. and ,,𝑠.-𝐹. are the angular and linear acceleration of the foot. The operators with the superscript ,∗-𝑥.,  ,∗-𝑦. and ,∗-𝑧. select the 𝑥, y, and 𝑧 scalar comp...
	Signal Processing. The impedance parameters were estimated for each subject, at each pose, and around each rotating axis, combining samples from ten perturbations (0.8 s window around each perturbation, starting at the onset of perturbation), and solv...
	Figure 10. Stages of the ankle impedance estimation. (a) ankle angle due to the perturbation, (b) input torque acting on ankle without the FP inertia torques, (c-d) filtered angles and torques, with region of interest highlighted, and (e) the predicti...
	Outlier Removal. Finally, to account for the modulation of impedance due to sudden muscle contractions [66], samples with an absolute residual larger than 2.5 times the standard deviation of the residual were discarded as outliers; then the regression...

	4.5 Results and Discussion
	4.5.1 Range of Ankle Torque and Angle
	The average CoP position in the anterior-posterior direction was 28.1% ± 1.6%, 40.7% ± 1.2%, 52.7% ± 2.0%, and 64.9% ± 2.9% of the foot length, for FF, MS, MS+, and TS, respectively. The small deviation is expected since the subjects had real-time fee...
	Figure 11. Mean angle and mean torque for the different stationary poses

	4.5.2 Anisotropic Ankle Impedance
	The average ankle stiffness and variance accounted for is presented in Figure 12. The DP stiffness substantially increased as the CoP moved forward, ranging from approximately 1.2 Nm/rad/kg to 5.0 Nm/rad/kg (4-times increase). On the other hand, the I...
	Figure 12. Anisotropic ankle stiffness for four standing poses. (a) Stiffness and (b) VAF.
	The average VAF was above 90% for MS and MS+ and above 80% for FF and TS. One explanation for the lower VAF is that at the FF and TS poses, the subjects had to extend their stances in the anterior-posterior direction, making their balance less stable....
	The stiffness determined in this study is smaller than the respective stiffness in supine, non-loaded, ankle conditions, as reported by Weiss et al. [66]. This difference in stiffness suggests that factors other than ankle angle and torque, such as th...



	5 Time-Varying Mechanical Impedance of the Human Ankle across the Stance Phase
	5.1 Motivation
	Since a specific group of muscles is used to move the ankle in particular directions, it is hypothesized that the impedance of the ankle depends on the direction of the ankle rotation due to an external perturbation. Therefore, the goal of this experi...

	5.2 Subjects
	Four male subjects (age and Body Mass Index ranging from 25 to 31 years and 29.4 kg/m2 to 25.6 kg/m2, respectively) with no self-reported history of neuromuscular or biomechanical disorders were recruited for this experiment. The subjects gave written...

	5.3 Experimental Protocol
	The vibrating platform applied step function torque perturbations to the ankle along sixteen axes of rotation (0º to 337.5º in 22.5º increments), in which 0º, 90º, 180 º, and 270º refer to ankle angle perturbations in eversion (E), dorsiflexion (D), i...
	Ground torque perturbations in the form of step inputs acted on the ankle in sixteen axes of rotation. For each perturbation, the measurements of the ankle angle and torque were projected to the plane of rotation of the correspondent perturbation for ...
	Figure 13. Axes of rotation. (a) Subject stepping on the force plate during walking experiment. (b) Axes of rotation of perturbations applied to the ankle.
	It was found, experimentally, that 100 steps at each of the 16 axes of perturbation is sufficient to converge to a result, even after removing about 6% of the steps as outliers, resulting in 1600 measured steps per subject. The experiment consisted of...
	Each perturbation occurred around a random axis (out of the possible 16 axes of rotation), in a random stage of the stance phase, to contain reflexive dynamics and preventive reactions by the subject. The vibrating platform preloads the actuators prio...

	5.4 Identification of the Time-Varying Ankle Impedance
	The steps were separated into 16 groups, according to the type of perturbation applied to the step, resulting in 100.0 ± 11.1 steps per group. The ankle angle and torques were converted to the foot coordinate frame then rotated along the foot’s Y-axis...
	where 𝜙, 𝒒 𝜖 ,ℝ-3., and ,𝒒-𝑅.𝜖 ,ℝ-3. are the axis of rotation in question, a variable represented in the foot frame (either ankle torque or angle), and the same variable represented in the coordinate frame of the rotation.
	The outlier steps were removed based on three criteria: the stance duration, the average angle, and the average torque. Each criterion was evaluated separately and the step was kept if it passed all three criteria. The stance duration, average angle, ...
	The angles and torques were low-pass filtered (20 Hz cutoff) and linearly interpolated to have the duration be equal to the average stance duration (0.72 ± 0.03 s). This was done with the MATLAB’s resample command, which uses a polyphase anti-aliasing...
	The measured angles and torques have two components: a large curve from the gait activity and a smaller curve due to the external perturbation. The smaller component is the signal that should be used for the impedance estimation because it is the reac...
	Another round of outlier detection removed approximately 20% of the steps. In this detection criterion, the steps with angles or torques with any sample outside of the ± 3 standard deviation boundaries were removed (calculated across step repetitions)...
	This procedure resulted in a time-varying impedance curve for each step. These results were averaged across step repetitions, without including time sections that are prior to or 125 ms after the perturbations (to remove signals with low signal to noi...

	5.5 Results and Discussion
	The average of the stiffness and damping were calculated across the four subjects and presented in polar plots with ± 1 standard deviation. Each parameter was shown in eight polar plots, representing increasing moments of the stance phase. The inertia...
	In general, the ankle stiffness and damping parameters are low at heel-strike, then they increase towards mid-stance, and decrease towards push-off. The stiffness in IE was higher than in DP from the heel-strike to about 24% of the stance phase. This...
	Interestingly, the ankle stiffness during early stance was not symmetric as previously reported in experiments with an unloaded ankle [31], [59]. It showed the highest value along DE/PI, which are ankle rotations close to the axis of rotation of the s...
	In addition, the complex shape of the stiffness, especially in early stance (stance phase < 24%), cannot be approximated with only two parameters as done in Chapter 2, in which ,𝐾-𝐷𝑃. and ,𝐾-𝐼𝐸. parametrized the ankle stiffness. For example, the...
	Figure 14. Average normalized time-varying ankle stiffness across the stance phase. The stiffness is normalized by the subjects’ masses. The square markers, solid line, and dotted lines represent the measured stiffness, smoothed average, and smoothed ...
	Figure 15. Average normalized time-varying ankle damping. The damping is normalized by the subjects’ mass. The square markers, solid line, and dotted lines represent the measured damping, smoothed average, and smoothed ± standard deviation.


	6 Design of a Vision Device to Assist Impedance Modulation of Ankle-Foot Prostheses
	6.1 Motivation
	In view of the effects of gait phase on the ankle impedance, a prosthesis control must be aware of the user’s state. This chapter reports the design of a device with environment-sensing capabilities, named Vision Device for Gait Assistance (VDGA). The...

	6.2 Hardware
	The VDGA is composed of a mobile computer (Hardkernel ODROID-XU4), a supervisor computer (Laptop with Ubuntu 16.04 operational system), a depth camera (PMDTec CamBoard pico flex), a microcontroller (WeMos Lollin32/ESP32), an IMU (Adafruit BNO055), a f...
	Figure 16. Components of the vision device used for gait assistance.
	The shank shell must provide a stable attachment between the subject’s shank and the sensors (camera and IMU) so that the measurements are consistent across time. The shank shell holds the depth camera via a camera adaptor with an adjustable pitch ang...
	Figure 17. (a) Visual Device for Gait Assistance. (b) Waist pack and (c) shank shell.
	The waist pack holds the onboard computer, the battery, the voltage regulator, and a battery voltage checkers (to prevent harm to subject or device due to battery under-voltage). The two USB cables loop around the cable clips on the shank shell, then ...
	Figure 18. FSR circuit to detect the stance phase. When the FSR is under mechanical load, the electrical resistance decreases, and the ADC detects a voltage increase.
	The FSR and the 50 kΩ resistors are connected in series to form a voltage divider circuit, allowing the microcontroller to measure the change in resistance of the FSR in the form of voltage change (Figure 18). The common terminal of the resistors (mid...

	6.3 Software Architecture
	The onboard computer was configured as a Wi-Fi (802.11ac) hotspot to share sensor measurements and remote access to the clients on the network (the supervisor computer) from a radius of more than 10 meters. Because the onboard computer does not have a...
	ROS is a growing platform used in robotics because it facilitates development and integration of software. ROS provides an infrastructure for multiple programs (ROS nodes), executing in real-time, and possibly on different computers to exchange inform...
	The graph of the programs and information on the VDGA system (mobile and supervisor computers) are shown in Figure 19, where the ROS nodes are represented as ellipses, the ROS messages are the boxes, and the flow of information is represented by the a...
	Figure 19. Graph of the processes executing on the VDGA system. Ellipses are ROS nodes, boxes are ROS messages, and the arrows point to the subscriber to the messages.
	The microcontroller publishes the IMU and FSR measurements to the mobile computer via serial communication (UART, 500000 Baud rate). The interface to the IMU uses the Adafruit BNO055 library [70] and physically via the I2C serial protocol (400 kHz clo...

	6.4 Extrinsic Calibration between the Camera and the IMU
	Figure 20 shows the VDGA shank shell with the depth camera, the IMU sensor, a visual landmark, and the inertial frame from which the IMU is oriented (in which X, Y, and Z axes point to east, north, and up, respectively). To represent environmental mea...
	Figure 20. Coordinate frame definitions of the VDGA. A visual landmark, {L}, is observed by the camera, in the camera frame {C}. Variables represented in this frame must be converted to the inertial frame, {I}, via the IMU sensor orientation.
	A spatial vector represented in the camera frame, ,-{𝐶}-𝒔.∈,ℝ-3., is converted to the inertial frame, ,-{𝐼}-𝒔.∈,ℝ-3., via the coordinate transformation
	where ,𝑞-𝐶.∈𝑆𝑂(3), ,𝑞-𝑆.∈𝑆𝑂(3), ,𝑞-𝐶𝑆.∈𝑆𝑂(3) are the unit quaternions representing the rotation of the camera, the IMU sensor, and the IMU sensor relative to the camera, respectively. The operators ⨂ and ,𝑞. are the quaternion multiplica...
	There are many extrinsic calibration approaches [72], [73] reported in the field, however, because the IMU BNO055 provides the sensor orientation directly and the noise biases are not easily quantifiable (due to the bias noise compensation performed...
	6.4.1 Calibration Procedure
	As shown in Figure 21, the VDGA was moved across space, exciting all three axes (Figure 21.a), while the depth camera focused on a visual landmark (a checkerboard, 5×6 internal grids, grid length of 30 mm, Figure 21.b). The intensity images, camera in...
	Figure 21. Intrinsic calibration setup. (a) Position and orientation of the camera with respect to the (b) visual landmark (checkerboard).
	The calibration procedure involves predicting the IMU orientation ,𝑞-𝑆., body angular velocity, ,-{𝑆}-𝝎., and linear body acceleration (with the static acceleration artifact from the gravity), ,,-{𝑆}-𝒂.-𝑆., given the camera motion and the unkno...
	where ,𝑞-𝐼𝐿. is the rotation from the inertial to the landmark frame;
	,𝑞-𝐿𝐶.(𝑡) is the rotation from the landmark to the camera frame;
	,𝑞-𝐶𝑆. is the rotation from the camera to the IMU frame;
	,-{𝐶}-𝝎.(𝑡) is the body angular velocity represented in the camera frame;
	,𝒂-𝐶.(𝑡) is the linear acceleration of the camera;
	,𝒓-𝐶𝑆. is the position vector from the camera to the IMU, in the camera frame;
	𝒈 is the gravity vector, in the inertial frame;
	,𝑡-𝑑. is the unaccounted-for time delay between the IMU and camera samples.
	For simplicity, the quaternion operations on Equation 7.5 were suppressed. But as a note, ,𝒂-𝐶.(𝑡) and 𝒈 are converted from the landmark and inertia frames, respectively, to the IMU frame. The other components of the equation are converted from th...
	The unknown parameters ,𝑞-𝐼𝐿., ,𝑞-𝐶𝑆., ,𝑟-𝐶𝑆., and ,𝑡-𝑑. were estimated by minimizing the residual of Equations 7.3, 7.4, and 7.5, with weighting factors of 0.2, 5.0, and 10.0, respectively. The weighting factors makes the units of angle, a...


	6.5 Results and Discussion
	The extrinsic calibration estimated the ,𝑞-𝐶𝑆.=[−0.0123, 0.9997, 0.0213, 0.0016] (x, y, z, w components, respectively) and ,𝑡-1.=34.9 𝑚𝑠 (the reconstruction of all the IMU measurements are shown in Figure 22). The ,𝑞-𝐶𝑆. parameter converged t...
	Figure 22. IMU orientation, linear acceleration, and angular velocity during the extrinsic calibration experiment. The IMU measurements are represented in black lines, while the colored, thicker, lines are the IMU predictions based on the extrinsic mo...
	The parameter ,𝑞-𝐼𝐿. was evaluated to equal ,,0.8339, −0.5520, 0.012, 0.0003.-𝑇., which agrees with the orientation of the checkerboard, and the ,𝑟-𝐶𝑆. parameter did not converge to an expected value. The estimation of ,𝑟-𝐶𝑆. possibly could ...


	7 Heel Strike Prediction for a Prosthetic Device using Depth Vision
	7.1 Motivation
	This chapter reports a preliminary evaluation of the VDGA sensing accuracy. The capabilities to 1) sense the environment by estimating the ground inclination and 2) to predict the user intent by estimating the gait phase are described in Section 7.2 a...

	7.2 Methods
	7.2.1 Environment Characterization
	The VDGA characterizes the environment as a plane, representing the ground, whose parameters are represented with respect to the inertial frame. The plane parameters with respect to the camera frame are first estimated with the depth camera, then conv...
	Figure 23. Measurements from the VDGA during walking, showing the ground and a section of the subject’s shoe. Depth camera (a) intensity and (b) IMU orientation represented as a unit quaternion.
	The depth camera also captures objects above the ground, including a section of the subject’s foot (Figure 23.a) and possible obstacles on the ground. These objects must be recognized as outliers so the algorithm can characterize the ground plane with...
	Figure 24. Point cloud processing pipeline. Convert depth image (a) into point cloud (b), downsample cloud into a voxel grid, and estimate plane from points close to plane and with low angular deviation (c). {C}, {S}, and {I} are the coordinate frames...
	The resulting plane model from the RANSAC algorithm is represented by a mathematical model (Equation 7.1) in which the origin is the optical center of the camera and the X, Y, and Z axes point upwards, to the right, and forward from the image perspect...
	where 𝑎, 𝑏, 𝑐, and 𝑑 are the coefficients of the plane model. However, a more useful representation of the plane is through the normal vector to the plane (,𝒏., Equation 7.2) and the plane distance to the camera (𝑝, Equation 7.3), calculated as ...

	7.2.2 Gait Cycle Estimation
	As shown in previous sections, the mechanical impedance varies across the gait phase due to a combination of reasons (muscle contraction, ankle angle, and ankle torque, among others). Thus, it is essential for a powered prosthesis to accurately track ...
	The response variable was labeled using the FSR measurements. Suppose the gait phase, 𝜑[𝑡] 𝜖 ℝ | 0≤𝜑<1, is defined as 0 on the moment of heel strike and continually increases to 1 at the heel strike of the next step. For any time, ,𝑡-𝑖., that t...
	For the predictor variables, two approaches were tested to evaluate the benefit of using the camera depth information. The predictor variable of the first approach, ,𝕏-𝑎., used the instantaneous measurements from the IMU (angular velocity and linea...
	While the predictor variable of the second approach, ,𝕏-𝑏., also used the instantaneous measurement of the IMU and, in addition, the time-interpolated ground estimates: the estimated normal vector of the ground (in the camera frame) and the camera d...
	Each phasor component of the response variable was fit individually using a Least Square regression. Sixty percent of the samples were selected randomly for using on the training and the remaining 30% were used for testing, to evaluate the prediction...
	where ,. represents the estimated variable by the regression model and atan2 is the arctangent function, returning an angle in the range ,0, 2𝜋..  Errors above 50% or below -50% of the gait phase were added values of -100% and 100%, respectively, bec...


	7.3 Experimental Procedure
	As a preliminary evaluation, three able-bodied subjects, including 2 males and 1 female, participated in a walking experiment in which their gait phase was predicted, and the environment was characterized.  The subjects were able-bodied with no self-r...
	Figure 25. Walking course used for the evaluation of the VDGA. Subjects followed the perimeter of the hallway at a self-selected speed. The green flag indicates the start and end position.
	The USB cables were attached to the outside of the upper shank and on the waist pack belt before connecting them to the onboard computer. This improved the mobility of the subject so that they could walk without interference from the cabling. The shan...

	7.4 Results and Discussion
	The voltage measured on the FSR circuit ranged from 0 V, when the FSR was unloaded, to approximately 3.2 V, when the FSR was under the subject’s weight (Figure 26). For all subjects, the heel-strike event was detected when the voltage increased to abo...
	The voltage of the FSR stayed at 0 V during the later moments of the stance (40% to 60%). This happened because the foot heel lost contact to the FSR, possibly because the shoe was unable to conform to the foot when the foot segments were deforming. H...
	Figure 26. Voltage on the FSR circuit across the gait cycle for the subject I. The voltage was interpolated so that the heel strike happens at 0% and 100% marks.
	The IMU measurements from multiple steps are shown in Figure 27 interpolated across the gait cycle. The small variance of the IMU readings indicates the FSR was able to segment the stance phase accurately. As expected, the IMU detected high accelerat...
	Figure 27. IMU measurements across the gait cycle for subject I. The (a) angular velocity and (b) linear acceleration from the X, Y, and Z measurements, interpolated from multiple steps.
	7.4.1 Characterization of the Environment
	The normal vector of the ground predicted from the camera frame of a representative subject is shown in Figure 28. The normal vector was represented in the inertial frame; thus, it has a nominal value of ,,0, 0, 1.-𝑇. (z-axis points up). Ideally, the...
	Figure 28. Normal vector estimates of the ground plane represented across the gait cycle. Each normal plane estimate, represented in the inertial frame, is shown on the top graph. The angle between each normal vector estimate and the average normal ve...
	The average ground inclination, represented in the inertial frame, was calculated for each trial (Table 4). Interestingly, there was a substantial non-zero ground inclination in every trial of about 3 degrees. However, this does not mean there was a r...
	Table 4. Environmental ground inclination for each experimental trial. The inclination error was calculated along the X and Y axes of the inertial frame.
	The ground was characterized using instantaneous measurements of the IMU orientation and of the image depth. This analysis focused on evaluating the accuracy of the measurements and of the extrinsic calibration. However, a batch processing of many pas...

	7.4.2 Estimation of the Gait Cycle
	The histogram of the gait phase prediction errors for approach a (IMU as predictor) and b (IMU and depth as predictors) were calculated using the test samples (Figure 29). The gait phase prediction errors were 1.6 ± 15.6% and 0.2 ± 7.6% for approach a...
	Figure 29. Histogram of the prediction error of the gait phase estimator. The approach using IMU and depth information have smaller errors compared to the IMU-only approach.
	The visual information used on the second approach complemented the IMU measurements with the shank height and the shank orientation with respect to the ground. The IMU cannot estimate a linear positional variable directly (the double integration of l...



	8 Conclusion
	In this work, the mechanical impedance of the human ankle was studied to improve the control of robotic ankle-foot prostheses. The mechanical impedance was shown to increase as a response to co-contractions of the calf muscles. The ankle stiffness aro...
	The findings from the mechanical impedance experiments indicated the importance for robotic prostheses to recognize the state of the prosthesis user during the gait, as the user interacts with the environment. To further the work on robotic perception...
	As future work, the ankle impedance will be studied for different gait maneuvers and in complex environmental conditions, such as during ramp or stairs ascend or descend. In parallel, the VDGA algorithm will be extended to predict more features of the...
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